DOI QR코드

DOI QR Code

Design of SW Framework for Airborne Radar Real-time Signal Processing using Modular Programming

모듈화를 활용한 항공기 레이다 실시간 신호처리 SW Framework 설계

  • Jihyun, Lee (Department of Radar Software, Hanwha Systems) ;
  • Changki, Lee (Department of Radar Software, Hanwha Systems) ;
  • Taehee, Jeong (Radar and EW Technology Center, Agency for Defense Development (ADD))
  • Received : 2022.11.03
  • Accepted : 2022.12.30
  • Published : 2023.01.31

Abstract

Radars used by air-crafts have two important characteristics; First, they should have a real-time signal processing system finishing signal processing before deadline while getting and processing successive in-phase and quadrature data. Second, they can cover a lot of modes including A2A(Air to Air), A2G(Air to Gound), A2S(Air to Sea), and Ground Map(GM). So the structure of radar signal processing SWs in modern airborne radars are becoming more complicate. Also, the implementation of radar signal processing SW needs to reuse common code blocks between other modes for efficiency or change some of the code blocks into alternative algorithm blocks. These are the reason why the radar signal processing SW framework suggested in this paper is taking advantage of modular programming. This paper proposes an modular framework applicable on the airborne radar signal processing SW maintaining the real-time characteristic using the signal processing procedures for A2G/A2S as examples.

항공기에 탑재되는 레이다는 연속적으로 I/Q 데이터를 획득하는 동안 주어진 시간 내에 신호처리를 완료하는 실시간성을 반드시 유지해야 하며, 공대공부터 공대지, 공대해, Ground Map까지 다양한 모드와 기능을 수행해야 하는 특징을 가지고 있다. 따라서 개발이 진행될수록 레이다 신호처리 SW를 구성하는 코드의 구조가 복잡해진다. 또한 여러 모드를 순차적으로 구현하는 과정에서 기존 코드를 재활용하기도 하고 신호처리 알고리즘의 일부분만 바뀌기도 한다. 이와 같은 이유로 실시간성을 유지하며 코드의 재사용과 부분 교체가 편리한 모듈화의 장점을 이용해야 할 필요가 있다. 본 논문에서는 공대지/해를 구성하는 모드의 신호처리 과정을 통해, 실시간성을 유지하며 항공기 레이다 신호처리 SW에 적용 가능한 모듈화 Framework의 설계 방안을 제시한다.

Keywords

References

  1. T. Long, T. Zeng, C. Hu, X. Dong, L. Chen, Q. Liu, Y. Xie, Z. Ding, Y. Li, Y. Wang, and Y. Wang, "High resolution radar real-time signal and information processing," China Communications, vol. 16, no. 2, pp. 105-133, Feb. 2019. DOI: 10.12676/j.cc.2019.02.008.
  2. G. Hakobyan and B. Yang, "High-Performance Automotive Radar: A Review of Signal Processing Algorithms and Modulation Schemes," IEEE Signal Processing Magazine, vol. 36, no. 5, pp. 32-44, Sep. 2019. DOI: 10.1109/MSP.2019.2911722.
  3. W. J. Lee, "Ground Moving Target Tracking Using TWS on Airborne AESA Radar," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 33, no. 8, pp. 635-643, Aug. 2022. DOI: 10.5515/KJKIEES.2022.33.8.635.
  4. T. H. Kim, S. H. Ryu, J. H. Shin, H. W. Jeon, S. H. Jang, and S. J. Kim, "Design of Signal Processing for Target Detection and Tracking Based on High Pulse Repetition Frequency Waveforms in Airborne Active Electronically Scanned Array Radars," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 30, no.12, pp. 951-963, Dec. 2019. DOI: 10.5515/KJKIEES.2019.30.12.951.
  5. T. H. Kim, J. H. Shin, S. W. Lee, J. H. Park, S. H. Jang, and S. J. Kim, "Design of Waveform and Signal Processing of Target Detection for Detecting Closely Spaced Airborne Targets in Airborne Radar," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 31, no. 2, pp. 154-164, Jan. 2020. DOI: 10.5515/KJKIEES.2020.31.2.154.
  6. T. H. Kim, S. H. Ryu, J. H. Shin, Y. D. Kang, S. H. Jang, and S. J. Kim, "Doppler Beam Sharpening Image Formation through Flight Trials of Airborne Active Electronically Scanned Array Radar," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 30, no. 8, pp. 659-667, Aug. 2019. DOI: 10.5515/KJKIEES.2019.30.8.659.
  7. S. Y. Park, "Designing a Signal Processing Method for the Short-Range Target Tracking Mode of Airborne Radars," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 32, no. 8, pp. 734-742, Aug. 2021. DOI: 10.5515/KJKIEES.2021.32.8.734.
  8. G. W. Stimson, Stimson's Introduction to Airborne Radar (Radar, Sonar and Navigation), 3rd ed. India, Scitech Publishing, 2014.
  9. S. Y. Kim, S. H. Yoon, H. I. Shin, J. H. Youn, J. W. Kim, and E. N. You, "GMTI Two Channel Raw Data Processing And Analysis," Korean Journal of Remote Sensing, vol. 34, no. 6-1, pp. 847-855, Dec. 2018. DOI: 10.7780/kjrs.2018.34.6.1.1.
  10. M. I. Skolnik, Introduction to Radar Systems, 3rd ed. McGraw-Hill, USA, 2001.
  11. M. I. Skolnik, Radar Handbook, 3rd ed. McGraw-Hill, USA, 2008.
  12. M. Sahal, Z. A. Said, R. Y. Putra, R. E. A. Kadir and A. A. Firmansyah, "Comparison of CFAR Methods on Multiple Targets in Sea Clutter Using SPX-Radar-Simulator," in Proceedings of 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, pp. 260-265, 2020. DOI: 10.1109/ISITIA49792.2020.9163697.
  13. J. E. Roh, J. J. Won, and J. H. Yoon, "Beam Scheduling Algorithm for Interleaved Mode of AESA Radar," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 32, no. 4, pp. 377-385, Mar. 2021. DOI: 10.5515/KJKIEES.2021.32.4.377.