• Title/Summary/Keyword: Radar jamming

Search Result 71, Processing Time 0.022 seconds

Signal-Space Jamming Scheme for Disturbing Target Localization of Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템의 위치탐지 무력화를 위한 신호공간 재밍 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.878-883
    • /
    • 2018
  • A jamming design scheme to disturb target position estimation of a bistatic multiple-input multiple-output(MIMO) radar system is presented. The proposed method exploits the received signals from distributed multiple electronic sensors and combines them to produce a jamming signal. The proposed algorithm can eliminate the target by transmitting the delayed sum or the weighted sum of the received senor signals. Simulation results confirm the performance of the proposed method.

Classification of Radar Signals Using Machine Learning Techniques (기계학습 방법을 이용한 레이더 신호 분류)

  • Hong, Seok-Jun;Yi, Yearn-Gui;Choi, Jong-Won;Jo, Jeil;Seo, Bo-Seok
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.162-167
    • /
    • 2018
  • In this paper, we propose a method to classify radar signals according to the jamming technique by applying the machine learning to parameter data extracted from received radar signals. In the present army, the radar signal is classified according to the type of threat based on the library of the radar signal parameters mostly built by the preliminary investigation. However, since radar technology is continuously evolving and diversifying, it can not properly classify signals when applying this method to new threats or threat types that do not exist in existing libraries, thus limiting the choice of appropriate jamming techniques. Therefore, it is necessary to classify the signals so that the optimal jamming technique can be selected using only the parameter data of the radar signal that is different from the method using the existing threat library. In this study, we propose a method based on machine learning to cope with new threat signal form. The method classifies the signal corresponding the new jamming method for the new threat signal by learning the classifier composed of the hidden Markov model and the neural network using the existing library data.

Orthogonal Waveform Space Projection Method for Adaptive Jammer Suppression

  • Lee, Kang-In;Yoon, Hojun;Kim, Jongmann;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.868-874
    • /
    • 2018
  • In this paper, we propose a new jammer suppression algorithm that uses orthogonal waveform space projection (OWSP) processing for a multiple input multiple output (MIMO) radar system exposed to a jamming signal. Generally, a conventional suppression algorithm based on adaptive beamforming (ABF) needs a covariance matrix composed of the jammer and noise only. By exploiting the orthogonality of the transmitting waveforms of MIMO, we can construct a transmitting waveform space (TWS). Then, using the OWSP processing, we can build a space orthogonal to the TWS that contains no SOI. By excluding the SOI from the received signal, even in the case that contains the SOI and jamming signal, the proposed algorithm makes it possible to evaluate the covariance matrix for ABF. We applied the proposed OWSP processing to suppressing the jamming signal in bistatic MIMO radar. We verified the performance of the proposed algorithm by comparing the SINR loss to that of the ideal covariance matrix composed of the jammer and noise only. We also derived the computational complexity of the proposed algorithm and compared the estimation of the DOD and DOA using the SOI with those using the generalized likelihood ratio test (GLRT) algorithm.

Range Error of Monopulse Radar according to the Engagement Angle of Cross-Eye Jammer (크로스아이 재머의 조우각에 따른 모노펄스 레이다의 거리 오차)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.5
    • /
    • pp.30-35
    • /
    • 2020
  • In this paper, we analyzed the tracking error for the monopulse radar by controlling the phase difference, amplitude ratio and engagement angle of the cross-eye jammer. Cross-eye jamming is an important jamming method for monopulse radars, which causes a displacement in the radar receiving antenna input and misleads the radar's tracking angle. As a result of analyzing the tracking distance error of the radar while changing the engagement angle between the monopulse radar and jammer, the maximum distance error occurs when the engagement angle is 0° and the phase difference is 180°. It was confirmed that the error decreased to 70% or less of the maximum distance error into 45°~135°. In order to increase the efficiency of jammers, it is necessary to study rotary jammers or multi-channel jammers. This study will be very useful for the design of cross-eye jammers for aircraft and ships.

Development of Tracking Technique against FMCW Proximity Fuze (FMCW방식 근접신관 신호 추적 기법 개발)

  • Hong, Sang-Geun;Choi, Song-Suk;Shin, Dong-Cho;Lim, Jae-Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.910-916
    • /
    • 2010
  • A modern artillery use a FMCW Proximity Fuze for effectively target destruction. FMCW Proximity Fuze can be deceived by Jamming Technique because it uses RF for distance estimation. FMCW Proximity Fuze algorithm is similar to FMCW radar's, but normal Jamming Tech. like Noise and Mulitone is useless. Most Shots with FMCW Proximity Fuze have a additional mechanical fuze against RF Jamming. Shots explode by mechanical fuze when Proximity Fuse is Jammed. However, distance Deception is available because shots can not distinguish between deception jamming signal and ground reflected signal. For making Distance Deception Jamming, FMCW signal tracking is demanded. In this paper, we propose a FMCW tracking method and develop the Jammer to show Jamming signal.

Deception Performance Analysis of Cross Eye Technique against Conical Scan Radar (크로스 아이 기법의 원추형 스캔 레이더 기만 성능 분석)

  • Jang, Yeonsoo;Park, Jintae;Cho, Jihaeng;Lee, Changhoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.583-590
    • /
    • 2018
  • Cross eye technique was proposed as an angle deception jamming technique against monopulse radars. Tracking radars use monopulse or conical scan methods for angle estimation of a target. Thus, if we verify deception performance of cross eye technique against a conical scan radar, efficient jamming systems can be developed to disturb both monopulse radars and conical scan radars. In this paper, we propose a mathematical model for a conical scan radar and a cross eye system. Using the proposed model, angular deception performance of the cross eye technique against conical scan radar is analyzed.

Analysis of Adaptive Side-Lobe Canceller Algorithm for Fully Digital Active Array Radar (완전 디지털 능동배열 레이다의 적응형 부엽제거 알고리즘에 관한 연구)

  • Yang, Woo-Yong;Park, Min-Kyu;Hong, Sung-Won;Kim, Chan-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.375-382
    • /
    • 2018
  • To eliminate strong jamming signals, a radar acquires a relatively weak target signal by using a side-lobe canceller (SLC) algorithm. This paper presents a novel adaptive SLC algorithm that is applicable to a fully digital active array radar. First, a covariance matrix is obtained from the SLC beam. Then, an adaptive SLC coefficient is extracted after calculating the correlation matrix between the main beam signal and the SLC beam signal. Finally, the target signal is estimated and the jamming signal is removed through the operation with the main beam signal. The application results from simulated radar signals demonstrated that the proposed algorithm is effective in an SLC system. Moreover, we analyzed various considerations and improved systematic usability.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Development of an FMCW Radar Altimeter Simulator Using Optical Delay Lines (광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발)

  • Lee, Jae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.208-216
    • /
    • 2017
  • This paper presents the design method of an FMCW(frequency-modulated continuous-wave) altitude simulator which generates propagation delay signals according to target distances to test the radar altimeter. To improve the conventional RF method for creating delay signals, the simulator is designed by the RF-optics-RF method using optical delay lines. In addition, it is designed to simulate the Doppler shift and jamming that may occur in actual flight environment. In order to evaluate the performance of the developed simulator, the integration tests have been conducted with the radar altimeter. Through the test, we successfully verified the performance of the simulator.

Estimation of Jamming Parameters based on Gaussian Kernel Function Networks (가우스 요소함수 망에 기초한 재밍 파라미터 추정)

  • Hwang, TaeHyun;Kil, Rhee Man;Lee, Hyun Ku;Kim, Jung Ho;Ko, Jae Heon;Jo, Jeil;Lee, Junghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Effective jamming in electronic warfare depends on proper jamming technique selection and jamming parameter estimation. For this purpose, this paper proposes a new method of estimating jamming parameters using Gaussian kernel function networks. In the proposed approach, a new method of determining the optimal structure and parameters of Gaussian kernel function networks is proposed. As a result, the proposed approach estimates the jamming parameters in a reliable manner and outperforms other methods such as the DNN(Deep Neural Network) and SVM(Support Vector Machine) estimation models.