• 제목/요약/키워드: Radar Tracking Filter

검색결과 90건 처리시간 0.03초

기동 플랫폼 탑재 레이다 추적 성능 향상을 위한 항법 필터 설계 (Design of Navigation Filter to Improve Tracking Performance in Radar with a Moving Platform)

  • 조형준;문현욱;안지훈;손성환
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.115-121
    • /
    • 2024
  • 기동 플랫폼에 탑재된 레이다는 플랫폼이 이동 및 회전함에 따라 레이다의 좌표계 상태도 같이 변화한다. 이때, 추적을 수행하기 위하여 센서로부터 측정된 플랫폼의 상태 정보를 이용하여 표적의 좌표를 변환하게 되며 센서의 잡음, 통신 지연, 센서 갱신 주기와 같은 원인으로 인하여 추적 성능이 저하될 수 있다. 본 논문에서는 센서의 오차로 인한 추적 성능 저하를 최소화하기 위하여 기동 플랫폼의 상태정보를 추정하기 위한 항법 필터를 설계하고 모의 시험을 통해 항법 필터 적용을 통한 추적 성능 개선 효과를 분석하였다. 이러한 항법 필터 설계를 위하여 3가지의 필터 알고리즘을 분석 및 적용하여 각 필터별 플랫폼 위치 및 자세 성능 개선 효과를 확인하였고 가장 높은 성능의 필터 알고리즘을 적용하여 설계된 항법 필터를 추적 모의 시험에 적용하여 항법 필터 적용 전후의 추적 성능 개선을 확인하였다.

추적 레이더에서 적응형 확장 칼만 필터의 성능 분석 (Performance Analysis of Adaptive Extended Kalman Filter in Tracking Radar)

  • 송승언;신한섭;김대오;고석준
    • 대한임베디드공학회논문지
    • /
    • 제12권4호
    • /
    • pp.223-229
    • /
    • 2017
  • An angle error is a factor obstructing to track accurate position in tracking radars. And the noise incurring the angle error can be divided as follows; thermal noise and glint. In general, Extended Kalman filter used in tracking radars is designed with considering thermal noise only. The Extended Klaman filter uses a fixed measurement error covariance when updating an estimate state by using ahead state and measurement. But, a noise power varies according to the range. Therefore we purposes the adaptive Kalman filter which changes the measurement noise covariance according to the range. In this paper, we compare the performance of the Extended Kalman filter and the proposed adaptive Kalman filter by considering KSLV-I (Korean Satellite Launch Vehicles).

칼만 필터를 사용한 레이더 펄스열 추적 (Tracking of Radar Pulse Train Using Kalman Filter)

  • 김용우;신욱현;이효섭;김홍필;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.176-176
    • /
    • 2000
  • Generally, discrete-time processing is applied to the uniformly-sampled signals. But, radars emit pulse trains with irregular time instances. In this paper, we formulate the radar pulse train as a stochastic discrete-time dynamic linear model. The estimation task can be done via linear signal processing using Kalman Filter and some considerations. As a result, we can estimate the pulse repetition interval of a pulse train and predict the time instances of the next pulses to be received.

  • PDF

스마트 자동차의 BSD 검지를 위한 추적알고리즘에 관한 연구 (A Study on the Tracking Algorithm for BSD Detection of Smart Vehicles)

  • 김완태
    • 디지털산업정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.47-55
    • /
    • 2023
  • Recently, Sensor technologies are emerging to prevent traffic accidents and support safe driving in complex environments where human perception may be limited. The UWS is a technology that uses an ultrasonic sensor to detect objects at short distances. While it has the advantage of being simple to use, it also has the disadvantage of having a limited detection distance. The LDWS, on the other hand, is a technology that uses front image processing to detect lane departure and ensure the safety of the driving path. However, it may not be sufficient for determining the driving environment around the vehicle. To overcome these limitations, a system that utilizes FMCW radar is being used. The BSD radar system using FMCW continuously emits signals while driving, and the emitted signals bounce off nearby objects and return to the radar. The key technologies involved in designing the BSD radar system are tracking algorithms for detecting the surrounding situation of the vehicle. This paper presents a tracking algorithm for designing a BSD radar system, while explaining the principles of FMCW radar technology and signal types. Additionally, this paper presents the target tracking procedure and target filter to design an accurate tracking system and performance is verified through simulation.

해양환경에서 선박 추적을 위한 라이다를 이용한 궤적 초기화 및 표적 추적 필터 (Track Initiation and Target Tracking Filter Using LiDAR for Ship Tracking in Marine Environment)

  • 황태현;한정욱;손남선;김선영
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2016
  • This paper describes the track initiation and target-tracking filter for ship tracking in a marine environment by using Light Detection And Ranging (LiDAR). LiDAR with three-dimensional scanning capability is more useful for target tracking in the short to medium range compared to RADAR. LiDAR has rotating multi-beams that return point clouds reflected from targets. Through preprocessing the cluster of the point cloud, the center point can be obtained from the cloud. Target tracking is carried out by using the center points of targets. The track of the target is initiated by investigating the normalized distance between the center points and connecting the points. The regular track obtained from the track initiation can be maintained by the target-tracking filter, which is commonly used in radar target tracking. The target-tracking filter is constructed to track a maneuvering target in a cluttered environment. The target-tracking algorithm including track initiation is experimentally evaluated in a sea-trial test with several boats.

Improved extended kalman filter design for radar tracking

  • Park, Seong-Taek;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.153-156
    • /
    • 1996
  • A new filtering algorithm for radar tracking is developed based on the fact that correct evaluation of the measurement error covariance can be made possible by doing it with respect to the Cartesian state vector. The new filter may be viewed as a modification of the extended Kalman filter where the variance of the range measurement errors is evaluated in an adaptive manner. The structure of the proposed filter allows sequential measurement processing scheme to be incorporated into the scheme, and this makes the resulting algorithm favorable in both estimation accuracy and computational efficiency.

  • PDF

접근 탄도미사일 추적시스템을 위한 좌표변환 확장강인칼만필터 설계 (Design of a Coordinate-Transformation Extended Robust Kalman Filter for Incoming Ballistic Missile Tracking Systems)

  • 신종구;이태훈;윤태성;최윤호;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.22-30
    • /
    • 2003
  • A Coordinate-Transformation Extended Robust Kalman Filter (CERKF) designed in the Krein space is proposed, and then applied to a nonlinear incoming ballistic missile tracking system with parameter uncertainties. First, the Extended Robust Kalman filter (ERKF) is proposed to handle the nonlinearity of measurement equation which occurs whenever the polar coordinate system is transformed into the Cartesian coordinate system. Moreover, linearization error inevitably occurs and deteriorates the tracking performance, which is considerably reduced by the proposed CERKF. Through the simulation results, we show that the proposed CERKF, which uses the measurement coordinate system, has less RMS error than the previous ERKF which is designed in the Krein space using the Cartesian system. We also verify that the robustness and the stability of the proposed filter are guaranteed in two radars: the phased way radar and the scanning radar

다중주기 칼만 필터를 이용한 비동기 센서 융합 (Asynchronous Sensor Fusion using Multi-rate Kalman Filter)

  • 손영섭;김원희;이승희;정정주
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

A POSITION TRACKING ALGORITHM WITH RADAR MEASUREMENT

  • Lim You-Chol;Ma Keun-Su;Lee Jae-Deuk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.332-336
    • /
    • 2004
  • This paper describes the remote tracking algorithm using measurements (azimuth, elevation, and slant range) of the radar ground station. Kalman filter model for noise reduction of the measured information is first derived by linearizing with respect to angle, angular rate, range, and range rate. And then a tracking algorithm is introduced to calculate the position of the vehicle during in-flight. The simulation results show that the algorithm is practical and effective enough tracking position of the vehicle in considerably less error.

  • PDF

전투기 레이다 측정 특성을 고려한 추적정확도 분석 (Analysis of Tracking Accuracy with Consideration of Fighter Radar Measurement Characteristics)

  • 서정직
    • 한국전자파학회논문지
    • /
    • 제29권8호
    • /
    • pp.640-647
    • /
    • 2018
  • 본 논문은 전투기 레이다의 표적 추적정확도(추적오차)를 분석하는 방법에 대한 연구이다. 레이다 측정 시 발생하는 측정오차, 탐지실패, radar cross section(RCS) 요동은 측정 품질을 열화시키며, 이는 추적정확도에 영향을 미치는 요인이 될 수 있다. 따라서 정확한 추적성능분석을 위해 이러한 레이다 측정 특성을 고려하는 것이 필요하다. 본 논문에서는 측정오차, 탐지확률, RCS 요동과 같은 레이다 특성을 복합적으로 활용하여 추적정확도를 분석하는 방법에 대해서 제안한다. 제안한 분석 방법을 활용한 실험을 통해 탐지확률과 RCS 요동에 의한 추적정확도 열화를 확인할 수 있었다.