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Abstracts A new filtering algorithm for radar tracking is developed based on the fact that correct evaluation of the
measurement error covariance can be made possibie by doing it with respect to the Cartesian state vector. The new
filter may be viewed as a modification of the extended Kalman filter where the variance of the range measurement
errors is evaluated in an adaptive manner. The structure of the proposed filter allows sequential measurement proc-
essing scheme to be incorporated into the scheme, and this makes the resulting algorithm favorable in both estima-

tion accuracy and computational efficiency.
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1. INTRODUCTION

The problem of tracking a moving target is a very interesting
application area for state estimation and has received a great deal
of treatment in the literature for nearly three decades. Usually the
target dynamics can be well described in a Cartesian coordinate
frame. Since the measurements made in radar-centered polar co-
ordinates are expressed as nonlinear equations in Cartesian coor-
dinates, the tracking problem is connected with nonlinear estima-
tion. There have been two common approaches to this problem.
One method is to apply a linear Kalman filter after converting
polar measurements to a Cartesian frame. This method will be
referred to as converted measurement Kalman filter (CMKF). The
other approach is to use the extended Kalman filter (EKF). Al-
though both of the methods perform well in many cases, it has
turned out that they may yield unacceptably large biases or incon-
sistent estimation results in certain applications [3-5].

Lerro and Bar-Shalom [4] presented a debiasing procedure
which accounts for approximation errors of the conventional
CMKEF. The idea was to modify the expressions for the first two
moments of the converted measurements so that the modified
expressions may match their true statistics. It was shown in [4]
that their modified CMKF (denoted MCMKEF) yields consistent
estimates at different situations unlike the conventional CMKF
and EKF .

In this paper, we propose a new tracking algorithm which is
different from the MCMKF. The newly developed filter may be
viewed as a modification of the EKF. The derivation of the filter
is based in part on a new observation on the relationship between
CMKEF and EKF. Incorporating the sequential measurement proc-
essing scheme introduced in [5] into the new filter reduces the
computational requirement of the resulting filter, which makes our
developed filter more efficient than the MCMKF. Comparison
results obtained from computer simulations using the proposed
and other existing methods are presented to show the effective-
ness of our proposed methods.

2. PROBLEM STATEMENT

Using the two-dimensional Cartesian coordinate system the
state vector is defined by
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x, =[x, ¥, x, ».1
where [x, y,]" and [x, 7] denote the position and velocity of

the target, respectively. The target position is tracked by a radar
that provides measurements of range and line-of-sight angle of the
target. The measurement equation is described by the following
nonlinear discrete equation

r” J 24yt v;
zk=[‘m}=h(xk)+vk= RS +{;] (M

o tan” (y, /x,) Vi
where the superscript m refers to the measured value. Measure-
ment noises v, and v; arc assumed to be mutually uncorrelated,
white, and zero mean with variances af and af,, respectively.

Thus the measurement noise covariance can be written as
. 2 2
R, = diag{o, .0y} -

The problem of radar tracking is to estimate as accurately as

possible the true state of the target from the noisy radar measure-
ments.

3. TWO BASIC APPROACHES: EKF AND CMKF

3.1 Brief Description
The extended Kalman filter (EKF) is a natural extension of the
linear Kalman filter for systems with nonlinear dynamics and/or
measurement equations. In the EKF, the nonlinear function h(-)
of (1) is approximated as follows.
h(x, )=~ h(im,l Y+ # (x - ik‘k_l )

where %, represents the Jacobian of h(-) evaluated at the a pri-

ori state estimate ik|k—l , that is,
cos8, sind, 0 0
w =M = siné cos@k
¢ ax | . -——+t —£ 00
TR r r

where 7 and Z?k , a priori estimates of the range and azimuth, are
defined by 7, = (%5, + 750" and 8, =tan™ (e, /3, ) -

We can then obtain the EKF equations easily by applying the
standard Kalman filter to the resulting linear model.
There exists an alternative approach to the EKF. The method is



to convert the polar measurements to a Cartesian coordinate frame
so that the resulting measurements may be modeled as linear in
the transformed state. This method will be called the converted
measurement Kalman filter (CMKF). Transforming (1) to a Carte-
sian coordinate frame gives the following pseudo-linear measure-
ment model

£ = X; r‘k coséy x|, Vi . @)
‘ Vi ry sin@y J’k v

The observation matrix in the measurement equation (2) becomes

then
1 0 00
H, = .
0100
Let us denote by RS the covariance of the Cartesian coordinate
measurement error {v; v}]' . In the CMKF, R is approximately

evaluated using the latest estimates of the state as follows:

RS = J,R.J} 3)
with
_ [cos?,‘ -7, sin—@,‘jl . @)
sinf, 1, cosd,

3.2 Comparison

The EKEF requires the evaluation of the Jacobians to obtain the
observation matrix, while the CMKF needs it to compute the
measurement error covariance. Since both the filters employ first-
order approximations, it would be interesting to examine how
EKF and CMKF are related. Since the target dynamics are usually
modeled as linear, the EKF and CMKF equations are identical in
time update. Accordingly, only the measurement update portion
will be considered here.

Let us assume that before the update by the current measure-
ment z, , EKF and CMKF have identical a priori estimates of the

state and the corresponding error covariance matrix, denoted

ﬁk|k , and }1‘ ., - The a posteriori estimates of the EKF, denoted
“ﬁk and Pk|k , are then obtained as
ik}k = xk|k 1 +K{‘:[zk - h(ik|k_,)] (&)
k[k _[1 zkw ] klk-1 (6)
with
Ki= Py Fl# By F+ R T )
On the other hand, the a posteriori estimates of the CMKF, de-
noted x , and Pk‘k , are given by
ik|k = xk|k 7t Kz - k[k N @®
k|L _[1 K H] k-1 (9)
with
KS = = Py H,[H, Py, H, +RETT. (10)
Noting that
H =J% (11
and uvsing (3), (7), and (10), we have
KC - Pk;k 1H [Hk k- 1H11 +JkRkJ“_l
P A Page- F AR (12)
=KFJ,"
Then it follows from (6), (9) and (12) that

PC = pE .

klk Kk
This shows that EKF and CMKF provide the same a posteriori

estimates for the error covariance matrix from the same a priori
information. Also, by comparing (5) and (8), it is easy to see that
the state estimate of the CMKF will become equal to that of the
EKF only if the Cartesian coordinate residual

z, - H.x

k|k-1
in the CMKF equation is replaced by
‘]k [ZI: - h(ik“(_l )] .
We remark that it is difficult to decide which of EKF and

CMKEF is better in estimation accuracy. In fact, the two filters
perform comparably in most cases.

4. NEW TRACKING ALGORITHM

For their simple structures, the EKF and CMKF schemes have
been widely used for radar tracking problems. However, in case
cross-range measurement errors of the target position are large, it
has been found that they give considerably degraded estimation
results [3, 4]. In the case of the CMKEF, this undesirable behavior
of the filter can be cured by debiasing the pseudo-linear measure-
ments and re-evaluating the corresponding mean and covariance,
which was proposed by Lerro and Bar-Shaiom [4]. This modified
version of the CMKF (MCMKEF) achieves its improved perform-
ance at the expense of increased filter complexity since their
newly derived expressions for the measurement error statistics are
rather complicated to compute. In this section, we will present a
new radar tracking filter which is derived by exploiting the idea of
the MCMKF method.

We first note that the conventional pseudo-linear measurements
of (2) may be rewritten as

(r, +v])cosv?

Xe{_ .
[yc}‘ Te60) (14 Yeysingg, +v)
T

k

(13)
where 7(-,-) is defined by

T(a.f) = [cosﬂ —asinﬂ] .

sinf  acosf
We can see that T(r’k,g’k)= J,
the target can be expressed as

el

From (13) and (14), the errors in each coordinate are obtained as

[ﬁxk ] _ {x; ~-x, :| 10,8, ){(rk + v,:)cosv.,‘,9 5|

S i Yi— W (l+vl:/rlr)51nvf

Then the mean and covariance of the Cartesian coordinate meas-
urement errors may be obtained in terms of the true range and
azimuth as

E[Sx,|r,.6,] r (e = 1)
I =T(r.0,
“ {EMyAnﬂd] v )[ 0

. The true Cartesian position of

(14)

and
var[é’x‘|rk,8 ]
* cov[5xk,5yk|rk,9 ]
=T(r,,6,) diag{(r} +62)(1+e 77} /2 —rle ",
1+ [rH(1-e7%)/2Y T' (1, .6,).

Here the expectations were evaluated using the following equali-
ties

cov[&xk,z‘)‘y,,]rk,ek]
var[§y,|r.6,]
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E[sinv?]=0, E[cosv?]=e ™2,

E[sin®vi]=(1-e2%)/2, E[cos’v’]=(1+e?%)/2.
We remark that for all practical radars it is reasonable to assume
o,<<r, and g, << 1 (15
where r, denotes the true range. This assumption allows the ex-

pressions for 4, and R to be simplified as follows.

-r /2
Hy zT(rk’ak)|: ¢ Og/ }

R = T(r,,0)RT'(r,.6,).
The “debiased” converted measurement can then be obtained by
subtracting the bias x4, from z]. The associated error covariance

is RY.

available in practice, it is impossible to evaluate 1, and R/ . Ac-

However, because the true range and azimuth are not

cordingly, it is required to find their best possible approximations.
As a reasonable approximation, we propose to take the condi-

tional mean given all the previous data, that is, E[pk|Zk_,] and
E[R,:‘]ZH] where Z, | represents the set of measurements up

through time & —1. Let us define

_ o3| Elr, cos6,|Z, ]

=Elu.lZ = b kTR 16
Hy [/’Ll 1] > [E[rk Sin9k1Zk_l] (16)
R = E[R|Z,., )= E[T( 8 )R T (n.0)| Z,, 1. (0T)

Then, the measurement update equations for the debiased meas-
urement conversion are obtained as

K k‘l\ \H [HkPA|k 1H’ +RF] (18)
;‘m = xk\k K [z ~H ’{kiqk_]] (19)
k|k _[1 K H ] klk-1" (20)

Notice that our suggested debiasing scheme is rather different
from that of {4] and that because 7z, and R/ cannot be computed
casily, the above algorithm is not practical to use.

At this stage, our strategy for obtaining an algorithm which is
easy to implement is to modify the measurement residual term by
utilizing the relation between EKF and CMKEF. That is, we pro-

pose to replace the term (z; — k|k ) in (19) by its first-order

approximation, J,{z, —h(ik‘k_])]. Then, from Egs. (18)~(20), a

different update procedure can be obtained as follows:

R, = Py FH Py # + R 2N
ik\k = ik}kul + Rz, —uf - h(ik|k_1)] (22)
Ajl. —[1 2’AW ] k=1 (23)
where
g =Jn, (24)
and
R” = J'RAJTY. (25)

It is interesting to observe that the measurement update equations
derived above are the same as those of the EKF except for the bias
term in the measurement residual and the modified expression for
the measurement error covariance.

Now, what is left is to evaluate z/ and R/ defined above.
Substitution of Egs. (16) and (17) into Eqgs. (24) and (25) does not
. They
depend on the probability density function for x, , which is not

immediately lead to explicit expressions for z” and R}

available in general, and their computation requires an involved

numerical integration. However, it will be shown below that we
can obtain the approximate expressions for zZ and R/ . For this

we proceed as follows.
First let us define

ho=r o6
8,=6,-0,
X=X =X
Yi =yk_yk‘k-|'

Also, let o2 and ag represent filter estimated a priori error vari-

ances of range and azimuth, respectively. Noting the following
first-order Taylor series approximations

= X ®e T Y Ve

s —_— (26)
e

T FTEE A S A

b, ~ k|k-1 - K[k-1 @7
s

we can approximate o’ and o-é as

o . S
2 K Pt VP 2X Vi P
'Tkl
. s T
Ve P ¥ X 1Py = X Vi P2

oy
T

b

o

2
9
where p, denotes the (i, ;) th element of P, Pt
It seems reasonable to suppose that o and 0':7 are smaller

than the corresponding measurement noise variances, o’ and
ol , while the filter is operating normally, so that from (15) it
follows that

o; <<r(xr) and o, <<l (28)

Using (4), (16), (26), (27), and (28) in Eq. (24), we can then ob-
tain

Elr, sin8, /7|7, ]
AL E[cos8,| Z, i os 7o
E[sin@, |Z..,1 2 0

{-&39/2}

In a similar manner, we have
= E[J;'T(r, .0 )R T (.0, XJ;") | Z,, ]

~ diag{o; +F’0505. 04}

— _c_r_é_[ E[r, c0s6,|Z, ] }

(29)

This completes the derivation of approximate explicit expressions
for z2 and R7 .
By comparing Eq. (29) with R, , some useful observations

may be made. In particular, it is not difficult to expect that nonlin-
ear effects will not be significant so long as the target range
r, (=7 ) remains relatively small compared with the ratio

0,005
Let us now present a filter initialization procedure. Using the
first single measurement, the initial estimate for the state may be

obtained as
. ry cosdy
xO‘O = m . m
ry siné;

where »” and @7 denote the range and azimuth measurements at
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time k =0, respectively. The corresponding error covariance can
be obtained from Eqs. (21) and (23) by applying the matrix inver-
sion lemma and letting PO[_—]l =0 (which means the absence of a

priori information before the arrival of z ):
Py =% RI(#)" .
Here, the matrix R/ is given by
(30)
Note here that because o, cannot be computed at the initializa-

Ry =diag{o} + (")’ 05, 05} -

tion stage, o, is used instead.

Finally, the fact that R/ is a diagonal matrix can be further

utilized for the development of a more efficient algorithm. It is
known that when the measurement error covariance is diagonal, it
is possible to sequentially process scalar components of the meas-
urement vector z, instead of processing it as a single data. The

scheme of sequential measurement processing leads to consider-
able computational savings [1].

5. SIMULATION RESULTS

To verify the performance of the proposed method via a com-
puter simulation, a numerical example is provided. It is assumed
that the target is initially located at a range of 200 km, and that it
moves straight with a nearly constant speed of 125 m/s. The target
trajectory is modeled by the two-dimensional piecewise constant
white acceleration model [2]. The standard deviation of the
piecewise constant acceleration errors is set as 0.5 m/sec’ for
each coordinate. The target is tracked by a radar that provides
measurements of range and azimuth at the sampling interval of
T =10s. The measurement noise processes are regarded as zero-
mean white Gaussian noise sequences. The noise process standard
deviations of range and azimuth measurements are 50 m and 2
deg, respectively.

The performance of the new algorithm is compared with that of
the standard extended Kalman filter (EKF) and an iterated ex-
tended Kalman filter (tEKF). For the EKF, we assumed a
maximum of 10 iterations per step since little further improve-
ment of estimation accuracy was achieved by additional iterations
for the given problem.

For a practical implementation of filter initialization, an initial
state estimate and the corresponding error covariance are obtained
using the first two measurements in a similar manner of the two-
point differencing method of [2]. Recall that in the case of the

proposed filter, the modified measurement error covariance E{‘
given by (30) is used, in place of R,, for the initialization.

A Monte Carlo simulation of 100 runs was carried out to obtain
the root mean square (RMS) errors in position and velocity for
each filter. The results are depicted in Figs. 1 and 2. As seen, the
EKF exhibits large biases and slow error decrease early in track.
In fact, the estimates that the EKF produces are found to be incon-
sistent. Although the performance of the ItEKF is better than that
of the EKF, one can observe that by using the proposed filter
there results a significant performance improvement as compared
with the other filters, especially for the transient response.

On the other hand, we have compared the performance of the
proposed method with that of the MCMKEF for this example, and
we have found that the proposed method is slightly better than the
MCMKEF in estimation accuracy. It should be also stressed that
the computational load of the proposed method is smaller than
that of the MCMKEF.
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6. CONCLUSIONS

In this paper, we presented a new radar tracking filter based on
the correct evaluation of the measurement error covariance with
respect to the Cartesian state vector. The newly proposed filter
tunes the measurement error variance in an adaptive manner to
effectively account for the measurement nonlinearities, and em-
ploys the sequential measurement processing scheme. The new
algorithm is simple in form and gives an easy indication of how
sensor accuracy and target geometry are related to measurement
accuracy viewed by (linearization-based) Kalman filters. A nu-
merical example was given which shows that the proposed
method reduces effectively the nonlinear effect of the polar meas-
urements while requiring a relatively small computational burden.
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