• Title/Summary/Keyword: Radar Environmental Signals

Search Result 19, Processing Time 0.024 seconds

Removal of Radio Frequency Interference of 1.29 GHz Doppler Wind Profiler Radar (1.29 GHz 도플러 윈드프로파일러 스펙트럼에서 전파 간섭 신호 제거)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.393-398
    • /
    • 2022
  • During the test operation period of the wind profiler prototype, radio frequency interference (RFI) contamination occurred in the spectrum. The reference of the RFI that removed the algorithm appearing in the wind profiler spectrum were investigated, and a new algorithm was developed to remove the RFI. First, it was filtered with a threshold value of 0.1 m/s of the spectral width, and the range of the number of gates with the same radial velocity was determined according to whether the beam was a vertical beam or an oblique beam. RFI contamination was removed through filtering and scanning of non-weather signals, and the continuity of wind vectors calculated from the improved spectral radial velocity was verified.

Full-waveform Inversion of Ground-penetrating Radar Data for Deterioration Assessment of Reinforced Concrete Bridge (철근 콘크리트 교량의 열화 평가를 위한 지표투과레이더 자료의 완전파형역산)

  • Youngdon Ahn;Yongkyu Choi;Hannuree Jang;Dongkweon Lee;Hangilro Jang;Changsoo Shin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • Reinforced concrete bridge decks are the first to be damaged by vehicle loads and rain infiltration. Concrete deterioration primarily occurs owing to the corrosion of rebars and other metal components by chlorides used for snow and ice melting. The structural condition and concrete deterioration of the bridge decks within the pavement were evaluated using ground-penetrating radar (GPR) survey data. To evaluate concrete deterioration in bridges, it is necessary to develop GPR data analysis techniques to accurately identify deteriorated locations and rebar positions. GPR exploration involves the acquisition of reflection and diffraction wave signals due to differences in radar wave propagation velocity in geotechnical media. Therefore, a full-waveform inversion (FWI) method was developed to evaluate the deterioration of reinforced concrete bridge decks by estimating the radar wave propagation velocity in geotechnical media using GPR data. Numerical experiments using a GPR velocity model confirmed the deterioration phenomena of bridge decks, such as concrete delamination and rebar corrosion, verifying the applicability of the developed technology. Moreover, using the synthetic GPR data, FWI facilitates the determination of rebar positions and concrete deterioration locations using inverted velocity images.

A Rational Ground Model and Analytical Methods for Numerical Analysis of Ground-Penetrating Radar (GPR) (GPR 수치해석을 위한 지반 모형의 합리적인 모델링 기법 및 분석법 제안)

  • Lee, Sang-Yun;Song, Ki-Il;Park, June-Ho;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.49-60
    • /
    • 2024
  • Ground-penetrating radar (GPR) enables rapid data acquisition over extensive areas, but interpreting the obtained data requires specialized knowledge. Numerous studies have utilized numerical analysis methods to examine GPR signal characteristics under various conditions. To develop more realistic numerical models, the heterogeneous nature of the ground, which causes clutter, must be considered. Clutter refers to signals reflected by objects other than the target. The Peplinski material model and fractal techniques can simulate these heterogeneous characteristics, yet there is a shortage of research on the necessary input parameters. Moreover, methods for quantitatively evaluating the similarity between field and analytical data are not well established. In this study, we calculated the autocorrelation coefficient of field data and determined the correlation length using the autocorrelation function. The correlation length represented the temporal or spatial distance over which data exhibited similarity. By comparing the correlation length of field data with that of the numerical model incorporating fractal weights, we quantitatively evaluated a numerical model for heterogeneous ground. Consequently, the results of this study demonstrated a numerical modeling technique that reflected the clutter characteristics of the field through correlation length.

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

New Generation of Imaging Radars for Earth and Planetary Science Applications

  • Wooil M. Moon
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • SAR (Synthetic Aperture Radar) is an imaging radar which can scan and image Earth System targets without solar illumination. Most Earth observation Shh systems operate in X-, C-, S-, L-, and P-band frequencies, where the shortest wavelength is approximately 1.5 cm. This means that most opaque objects in the SAR signal path become transparent and SAR systems can image the planetary surface targets without sunlight and through rain, snow and/or even volcanic ash clouds. Most conventional SAR systems in operation, including the Canada's RADARSAT-1, operate in one frequency and in one polarization. This has resulted in black and with images, with which we are familiar now. However, with the launching of ENVTSAT on March 1 2002, the ASAR system onboard the ENVISAT can image Earth's surface targets with selected polarimetric signals, HH+VV, HH+VH, and VV+HV. In 2004, Canadian Space Agency will launch RADARSAT-II, which is C-band, fully polarimetric HH+VV+VH+HV. Almost same time, the NASDA of Japan will launch ALOS (Advanced land Observation Satellite) which will carry L-band PALSAR system, which is again fully polarimetric. This means that we will have at least three fully polarimetric space-borne SAR system fur civilian operation in less than one year. Are we then ready for this new all weather Earth Observation technology\ulcorner Actual imaging process of a fully polarimetric SAR system is not easy to explain. But, most Earth system scientists, including geologists, are familiar with polarization microscopes and other polarization effects in nature. The spatial resolution of the new generation of SAR systems have also been steadily increased, almost to the limit of highest optical resolution. In this talk some new applications how they are used for Earth system observation purpose.

  • PDF

The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar (지하투과레이더를 이용한 이상구간 평가 시 안테나 지향성의 영향)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Park, Young-Kon;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.21-34
    • /
    • 2017
  • The ground penetrating radar (GPR) signal can be measured with different amplitudes according to the directivity, so the directivity of the antenna should be considered. The objective of this study is to investigate the directivity of antenna by analyzing the reflection characteristics of electromagnetic waves radiated from the antenna, and to evaluate effective range of angle that can inspect an abnormal area according to the directivity of antenna. For the measurement of the directivity, a circular metal bar is used as reflector and the signals are measured by changing the angle and the distance between reflector and antenna in the E- and H-plane. The boundary distance between the near field and the far field is determined by analyzing the amplitudes of reflected signals, and two points with different distances from each of near and far fields are designated to analyze radiation patterns in near and far fields. As a result of radiation pattern measurement, in the near field, minor lobes are observed at angle section at more than $50^{\circ}$ in both E- and H-plane. Therefore, antenna has the directivity for the direction of main lobe and minor lobes in near field. In the far field, antenna has the directivity for a single direction of main lobe because minor lobes are not observed. The amplitude of the signal reflected from the near field is unstable, but it can be distinguished from noise. Therefore, in the near field, the ground anomaly can be detected with high reliability. On the other hand, the amplitude of the signal reflected from the far field is stable, but it is hard to distinguish between reflected signal and noise because of the excessive loss of electromagnetic wave. The analyses of directivity in the near and the far fields performed in this study may be effectively used to improve the reliability of the analyses of abnormal area.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.