• Title/Summary/Keyword: Rabbit. Histological Analysis

Search Result 56, Processing Time 0.029 seconds

Electrospun Silk Nano-Fiber Combined with Nano-Hydoxyapatite Graft for the Rabbit Calvarial Model (토끼 두개골 결손부에서 전기 방사된 나노실크-수산화인회석 복합체를 이용한 골재생 효과에 대한 연구)

  • Kye, Jun-Young;Kim, Seong-Gon;Kim, Min-Keun;Kwon, Kwang-Jun;Park, Young-Wook;Kim, Jwa-Young;Lee, Min-Jung;Park, Young-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.293-298
    • /
    • 2010
  • Purpose: The objective of the present study was to determine the capability of electrospun silk fibroin as a biomaterial template for bone formation when mixed with nano-hydoxyapatite in vivo. Materials and Methods: Ten New Zealand white rabbits were used for this study and bilateral round shaped defects were formed in the parietal bone (diameter: 8.0 mm). The electrospun silk fibroin was coated by nano-hydroxyapatite and grafted into the right parietal bone (experimental group). The left side (control group) did not receive a graft. The animals were sacrificed at 6 weeks and 12 weeks, humanly. The microcomputerized tomogram (${\mu}CT$) was taken for each specimen. Subsequently, they were undergone decalcification and stained for the histological analysis. Results: The average value of all measured variables was higher in the experimental group than in the control at 6 weeks after the operation. BMC in the experimental group at 6 weeks after operation was $48.94{\pm}19.25$ and that in the control was $26.17{\pm}16.40$ (P = 0.027). BMD in the experimental group at 6 weeks after operation was $324.59{\pm}165.24$ and that in the control was $173.03{\pm}120.30$ (P = 0.044). TMC in the experimental group at 6 weeks after operation was $19.50{\pm}6.00$ and that in the control was $10.52{\pm}6.20$ (P = 0.011). TMD in the experimental group at 6 weeks after operation was $508.88{\pm}297.57$ and that in the control was $273.54{\pm}175.91$ (P = 0.06). Gross image of both groups showed higher calcification area at 12 weeks than them in 6 weeks. The average value of ${\mu}CT$ analysis was higher at 12 weeks than that in 6 weeks in both groups. BMC in the experimental group at 12 weeks after operation was $51.21{\pm}8.81$ and that in the control was $33.47{\pm}11.13$ (P = 0.010). BMD in the experimental group at 12 weeks after operation was $323.39{\pm}21.54$ and that in the control was $197.75{\pm}76.23$ (P = 0.012). TMC in the experimental group at 12 weeks after operation was $21.44{\pm}5.30$ and that in the control was $13.31{\pm}4.17$ (P = 0.008). TMD in the experimental group at 12 weeks after operation was $524.47{\pm}19.37$ and that in the control was $299.60{\pm}136.20$ (P = 0.016). Conclusion: The rabbit calvarial defect could be successfully repaired by electrospun silk nano-fiber combined with nano-hydroxyapatite.

Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect

  • Park, Jung-Chul;Lim, Hyun-Chang;Sohn, Joo-Yeon;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.223-230
    • /
    • 2009
  • Purpose: Synthetic bone products such as biphasic calcium phosphate (BCP) are mixtures of hydroxyapatite (HA) and ${\beta}$-tricalcium phosphate (${\beta}$- TCP). In periodontal therapies and implant treatments, BCP provides to be a good bone reconstructive material since it has a similar chemical composition to biological bone apatites. The purpose of this study was to compare bone regeneration capacity of two commercially available BCP. Methods: Calvarial defects were prepared in sixteen 9-20 months old New Zealand White male rabbits. BCP with HA and ${\beta}$- TCP (70:30) and BCP with Silicon-substituted hydroxyapatite (Si-HA) and ${\beta}$-TCP (60:40) particles were filled in each defect. Control defects were filled with only blood clots. Animals were sacrificed at 4 and 8 week postoperatively. Histomorphometric analysis was performed. Results: BCP with HAand ${\beta}$- TCP 8 weeks group and BCP with Si-HA and ${\beta}$- TCP 4 and 8 weeks groups showed statistically significant in crease (P <0.05) in augmented area than control group. Newly formed bone area after 4 and 8 weeks was similar among all the groups. Residual materials were slightly more evident in BCP with HA and ${\beta}$- TCP 8 weeks group. Conclusions: Based on histological results, BCP with HA and ${\beta}$- TCP and BCP with Si-HA and ${\beta}$- TCP appears to demonstrate acceptable space maintaining capacity and elicit significant new bone formation when compared to natural bone healing in 4 and 8 week periods.

Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue

  • Roh, Seung-Young;Kim, Ji Yeon;Cha, Hyo Kyeong;Lim, Hye Young;Park, Youngran;Lee, Kwang-No;Shim, Jaemin;Choi, Jong-Il;Kim, Young-Hoon;Son, Gi Hoon
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.408-418
    • /
    • 2020
  • The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.

EFFECT OF PLATELET-RICH PLASMA ON AUTOGENOUS BONE GRAFT FOR BONE FORMATION IN RABBIT (가토 하악골 결손부의 자가골 이식시 혈소판 풍부혈장이 골형성 촉진에 미치는 영향에 관한 연구)

  • Jeon, Min-Su;Kim, Bo-Gyun;Song, Jun-Ho;Yeon, Byong-Moo;Lee, Young-Woo;Noh, Kyung-Lok;Kim, Da-Young;Pang, Ean-O;Kim, Jun-Hyun;Nam, Jeong-Hun;Gang, Tae-In;Lim, Sung-Chul;Park, Young-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Purpose : Recently, various materials were developed for enhancing bone formation capacity. Platelet rich plasma(PRP) is an autologous source with several growth factors and obtained by sequestering and concentrating platelets by gradient density centrifugation. This study was to evaluate the effect of PRP on healing of grafted bone. Materials and methods : Two blood samples were obtained and analysed for measuring platelet counts of normal blood and PRP. In experimental group, two defects of mandibular bone, 10mm in diameter and 4.0mm deep, were created in the mandible and immediately grafted with autogenous bone chips mixed with PRP. In control group, same bone defects were prepared and grafted with autogenous bone chips. Gelform was used for carrier of PRP. 2 weeks, 4 weeks, 8 weeks later, each group was evaluated with histologi-cal and histomorphometric analyses. Results : According to histological observation, experimental group was showed more anastomosing newly-formed woven bone having osteoblastic activation than control group. According to histomorphometric analysis, there were 9.11% more newly-formed bone volume in experimental group than control group at 2 weeks, 7.91% more at 4 weeks, 20.08% more at 8 weeks. Conclusion: Our results demonstrated PRP in autogenous bone graft could enhance the bone formation.

MANDIBULAR DISTRACTION OSTEOGENESIS WITH COMPRESSION FORCE - BONE DENSITY, HISTOLOGICAL FINDINGS AND TMJ RESPONSE (압축력을 병용한 하악골 신장술)

  • Hwang, Young-Seob;Heo, June;Kim, Uk-Kyu;Park, Seong-Jin;Hwang, Dae-Seok;Kim, Yong-Deok;Chung, In-Kyo;Kim, Kyu-Cheon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.531-548
    • /
    • 2006
  • The purpose of this study was to investigate the biomechanical, histologic findings of distracted regenerate and TMJ response in modified distraction osteogenesis (DO) technique combined with compression force as biomechanical stimulation method which has been suggested in 2002, and developed thereafter by authors. This study was performed with two experiments. First experiment was designed to explore the optimal ratio of compression force versus distraction force for the new DO technique. Second experiment was planned to evaluate the reaction of TMJ tissue, especially condyle, disc after application of the DO technique with compression force. Total 52 New Zealand adult male-rabbits with 3.0kg body weight were used for the study. For the first study, 30 adult male-rabbits underwent osteotomy at one side of mandibular body and a external distraction device was applied on each rabbit with same manner. In the control group of 10 rabbits, final 8 mm of distraction with 1 mm rate per day was done with conventional DO technique after 5 latency days. For the experimental group of 20 rabbits, a compression force with 1 mm rate per day was added to the distracted mandible on 3-latency day after over-distraction (over-lengthening). As the amount of the rate of compression versus distraction, experimental subgroup I (10 rabbits) was set up as 2 mm compression versus 10 mm distraction (1/5) and experimental subgroup II (10 rabbits) was set up as 3 mm compression versus 11 mm distraction (about 1/3). All 30 rabbits were set up to obtain final 8 mm distraction and sacrificed on postoperative 55 day to analysis on biomechanical, and histologic findings of the bone regenerates. For second study, 22 adult male-rabbits were used to evaluate TMJ response after the DO method application with compression force. In the control group, 10 rabbits was used to be performed with conventional DO method, on the other hand, in a experimental group of 10 rabbits, 10 mm distraction with 2 mm compression (1/5 ratio) was done. The remaining 2 rabbits served as the normal control group. Histomorphologic examinations on both condyle, histological studies on condyle, disc were done at 1, 2, 3, 4, 7 weeks after distraction force application. The results were as follows: 1. On the bone density findings, the experimental group II (force ratio - 1/3) showed higher bone density than the other experimental group (force ratio - 1/5) and control group (control group - $0,2906\;g/cm^2$, experimental group I - $0.2961\;g/cm^2$, experimental group II - $0.3328\;g/cm^2$). 2. In the histologic findings, more rapid bone maturation like as wide lamellar bone site, more trabeculae formation was observed in two experimental groups compared to the conventional DO control group. 3. In morphologic findings of condyle, there were no differences of size and architecture in the condyle in the control and experimental groups. 4. In histologic findings of condyles, there were thicker fiberous and proliferative layers in experimental group than those of control group until 2 weeks after distraction with compression force. But, no differences were seen between two groups on 3, 4, 7 weeks after compression. 5. In histologic findings of disc, more collagen contents in extracellular matrix, more regular fiber bundles, and less elastin fibers were seen in experimental group than control group until 2 weeks after distraction with compression. But, no differences were seen between two groups on 3, 4, 7 weeks after distraction with compression. From this study, we could identify that the new distraction osteogenesis technique with compression stimulation might improve the quality of bone regeneration. The no remarkable differences on TMJ response between control and experimental groups were seen and TMJ tissues were recovered similarly to normal TMJ condition after 3 weeks.

THE CHANGE OF BONE FORMATION ACCORDING TO MAGNETIC INTENSITY OF MAGNET PLACID INTO TITANIUM IMPLANT SPECIMENS (타이타늄 임플랜트 시편 내부에 설치한 자석의 자성강도에 따른 골형성 변화)

  • Hwang Yun-Tae;Lee Sung-Bok;Choi Dae-Gyun;Choi Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.232-247
    • /
    • 2005
  • Purpose. The purposes of this investigation were to discover the possibility of clinical application in the areas of dental implants and bone grafts by investigating the bone formation histologically around specimen which was depending on the intensity of magnetic field of neodymium magnet inside of the specimens. Material and method. 1. Measurement of magnetic intensity - placed the magnet inside of the specimen, and measured the intensity of magnetic field around the 1st thread and 3rd thread of specimen 20 times by using a Gaussmeter(Kanetec Co., Japan). 2. Surgical Procedure - Male rabbit was anesthetised by constant amount of Ketamine (0.25ml/kg) and Rompun (0.25ml/kg). After incising the flat part of tibia, and planted the specimens of titanium implant, control group was stitched without magnet, while experimental groups were placed a magnedisc 500(Aichi Steel Co., Japan) or magnedisc 800(Aichi Steel Co., Japan) into it, fixed by pattern resin and stitched. 3. Management after the surgery - In order to prevent it from the infection of bacteria and for antiinflammation, Gentamycin and Ketopro were injected during 1 week from operation day, and dressed with potadine. 4. Preparation of histomorphometric analysis - At 2, 4 and 8 weeks after the surgery, the animals were sacrificed by excessed Ketamine, and then, specimens were obtained including the operated part and some parts of tibia, and fixed it to 10% of PBS buffer solution. After embedding specimens in Technovit 1200 and B.P solution, made a H-E stain. Samples width was 75$\mu$m . In histological findings through the optical microscope and using Kappa image base program(Olympus Co. Japan), the bone contact ratio and bone area ratio of each parts of specimens were measured and analyzed. 5. Statistical analysis - Statistical analysis was accomplished with Mann Whitney U-test. Results and conclusion. 1. In histomorphometric findings, increased new bone formation was shown in both control & experimental groups through the experiment performed for 2, 4 & 8 weeks. After 4 weeks, more osteoblasts and osteoclasts with significant bone remodeling were shown in experimental groups. 2. In histomorphometric analysis, the bone contact ratios were 38.5% for experimental group 1, 29.5% for experimental group 2 and 11.9% for control group. Experimental groups were higher than control group(p<0.05) (Fig. 6, Table IV). The bone area ratios were 60.9% for experimental group 2, 46.4% for experimental group 1 and 36.0% for control group. There was no significantly statistical difference between experimental groups and control group(p<0.05) (Fig. 8, Table VII) 3. In comparision of the bone contact ratios at each measurement sites according to magnetic intensity, experimental group 2(5.6mT) was higher than control group at the 1st thread (p<0.05) and experimental group 1 (1.8mT) was higher than control group at the 3rd thread(p<0.05) (Fig. 7, Table V, VI). 4. In comparision of the bone area ratios at each measurement sites according to magnetic intensity, experimental group 2(5.6mT) was higher than control group and experimental group 1 (4.0mT) at the 1st thread(p<0.1) and experimental group 2(4.4mT) was higher than experimental group 1 (1.8mT) at the 3rd thread(p<0.1) (Fig. 9, Table IX, X). Experiment group 2 was largest, followed by experiment group l and control group at the 3rd thread of implant. There was a significant difference at the 1st thread of control group & experiment group 2, and at 1st thread & 3rd thread of experiment group 1 & 2, and not at control group experiment group 1.(p<0.1)