References
- Abe, K., Machida, T., Sumitomo, N., Yamamoto, H., Ohkubo, K., Watanabe, I., Makiyama, T., Fukae, S., Kohno, M., Harrell, D.T., et al. (2014). Sodium channelopathy underlying familial sick sinus syndrome with early onset and predominantly male characteristics. Circ. Arrhythm. Electrophysiol. 7, 511-517. https://doi.org/10.1161/CIRCEP.113.001340
- Alonso, A., Jensen, P.N., Lopez, F.L., Chen, L.Y., Psaty, B.M., Folsom, A.R., and Heckbert, S.R. (2014). Association of sick sinus syndrome with incident cardiovascular disease and mortality: the atherosclerosis risk in communities study and cardiovascular health study. PLoS One 9, e109662. https://doi.org/10.1371/journal.pone.0109662
- Amasyali, B., Kilic, A., and Kilit, C. (2014). Sinus node dysfunction and atrial fibrillation: which one dominates? Int. J. Cardiol. 175, 379-380. https://doi.org/10.1016/j.ijcard.2014.05.043
- Andersen, H.R., Nielsen, J.C., Thomsen, P.E., Thuesen, L., Mortensen, P.T., Vesterlund, T., and Pedersen, A.K. (1997). Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome. Lancet 350, 1210-1216. https://doi.org/10.1016/S0140-6736(97)03425-9
- Assayag, P., Carre, F., Chevalier, B., Delcayre, C., Mansier, P., and Swynghedauw, B. (1997). Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. fibrosis. Cardiovasc. Res. 34, 439-444. https://doi.org/10.1016/S0008-6363(97)00073-4
- Bernstein, A.D. and Parsonnet, V. (1996). Survey of cardiac pacing and defibrillation in the United States in 1993. Am. J. Cardiol. 78, 187-196. https://doi.org/10.1016/S0002-9149(96)00255-X
- Bujor, A.M., Asano, Y., Haines, P., Lafyatis, R., and Trojanowska, M. (2011). The c-Abl tyrosine kinase controls protein kinase Cdelta-induced Fli-1 phosphorylation in human dermal fibroblasts. Arthritis Rheum. 63, 1729-1737.
- Chung, S., Kim, I.H., Lee, D., Park, K., Kim, J.Y., Lee, Y.K., Kim, E.J., Lee, H.W., Choi, J.S., Son, G.H., et al. (2016). The role of inositol 1,4,5-trisphosphate 3-kinase A in regulating emotional behavior and amygdala function. Sci. Rep. 6, 23757. https://doi.org/10.1038/srep23757
- Chung, S., Lee, E.J., Cha, H.K., Kim, J., Kim, D., Son, G.H., and Kim, K. (2017). Cooperative roles of the suprachiasmatic nucleus central clock and the adrenal clock in controlling circadian glucocorticoid rhythm. Sci. Rep. 7, 46404. https://doi.org/10.1038/srep46404
- Connolly, S.J., Kerr, C.R., Gent, M., Roberts, R.S., Yusuf, S., Gillis, A.M., Sami, M.H., Talajic, M., Tang, A.S., Klein, G.J., et al. (2000). Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. Canadian trial of physiologic pacing investigators. N. Engl. J. Med. 342, 1385-1391. https://doi.org/10.1056/NEJM200005113421902
- Dobrzynski, H., Boyett, M.R., and Anderson, R.H. (2007). New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115, 1921-1932. https://doi.org/10.1161/CIRCULATIONAHA.106.616011
- Ellmers, L.J., Scott, N.J., Piuhola, J., Maeda, N., Smithies, O., Frampton, C.M., Richards, A.M., and Cameron, V.A. (2007). Npr1-regulated gene pathways contributing to cardiac hypertrophy and fibrosis. J. Mol. Endocrinol. 38, 245. https://doi.org/10.1677/jme.1.02138
- Ge, J., Burnier, L., Adamopoulou, M., Kwa, M.Q., Schaks, M., Rottner, K., and Brakebusch, C. (2018). RhoA, Rac1, and Cdc42 differentially regulate alphaSMA and collagen I expression in mesenchymal stem cells. J. Biol. Chem. 293, 9358-9369. https://doi.org/10.1074/jbc.RA117.001113
- He, X., Zhang, K., Gao, X., Li, L., Tan, H., Chen, J., and Zhou, Y. (2016). Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels 31, 1696-1708. https://doi.org/10.1007/s00380-016-0808-z
- Herrmann, S., Fabritz, L., Layh, B., Kirchhof, P., and Ludwig, A. (2011). Insights into sick sinus syndrome from an inducible mouse model. Cardiovasc. Res. 90, 38-48. https://doi.org/10.1093/cvr/cvq390
- Iekushi, K., Taniyama, Y., Azuma, J., Katsuragi, N., Dosaka, N., Sanada, F., Koibuchi, N., Nagao, K., Ogihara, T., and Morishita, R. (2007). Novel mechanisms of valsartan on the treatment of acute myocardial infarction through inhibition of the antiadhesion molecule periostin. Hypertension 49, 1409-1414. https://doi.org/10.1161/HYPERTENSIONAHA.106.080994
- Inoue, T., Akashi, K., Watanabe, M., Ikeda, Y., Ashizuka, S., Motoki, T., Suzuki, R., Sagara, N., Yanagida, N., Sato, S., et al. (2016). Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatr. Allergy Immunol. 27, 521-526. https://doi.org/10.1111/pai.12575
- Jensen, P.N., Gronroos, N.N., Chen, L.Y., Folsom, A.R., deFilippi, C., Heckbert, S.R., and Alonso, A. (2014). Incidence of and risk factors for sick sinus syndrome in the general population. J. Am. Coll. Cardiol. 64, 531-538. https://doi.org/10.1016/j.jacc.2014.03.056
- John, R.M. and Kumar, S. (2016). Sinus node and atrial arrhythmias. Circulation 133, 1892-1900. https://doi.org/10.1161/CIRCULATIONAHA.116.018011
- Joung, B., Lin, S.F., Chen, Z., Antoun, P.S., Maruyama, M., Han, S., Piccirillo, G., Stucky, M., Zipes, D.P., Chen, P.S., et al. (2010). Mechanisms of sinoatrial node dysfunction in a canine model of pacing-induced atrial fibrillation. Heart Rhythm 7, 88-95. https://doi.org/10.1016/j.hrthm.2009.09.018
- Kii, I., Nishiyama, T., Li, M., Matsumoto, K., Saito, M., Amizuka, N., and Kudo, A. (2010). Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J. Biol. Chem. 285, 2028-2039. https://doi.org/10.1074/jbc.M109.051961
- Kim, J.Y., Lim, H.Y., Shin, S.E., Cha, H.K., Seo, J.H., Kim, S.K., Park, S.H., and Son, G.H. (2018). Comprehensive transcriptome analysis of Sarcophaga peregrina, a forensically important fly species. Sci. Data 5, 180220. https://doi.org/10.1038/sdata.2018.220
- Lamas, G.A., Lee, K.L., Sweeney, M.O., Silverman, R., Leon, A., Yee, R., Marinchak, R.A., Flaker, G., Schron, E., Orav, E.J., et al. (2002). Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N. Engl. J. Med. 346, 1854-1862. https://doi.org/10.1056/NEJMoa013040
- Landry, N.M., Cohen, S., and Dixon, I.M.C. (2018). Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic Res. Cardiol. 113, 1. https://doi.org/10.1007/s00395-017-0659-5
- Li, G., Jin, R., Norris, R.A., Zhang, L., Yu, S., Wu, F., Markwald, R.R., Nanda, A., Conway, S.J., Smyth, S.S., et al. (2010). Periostin mediates vascular smooth muscle cell migration through the integrins alphavbeta3 and alphavbeta5 and focal adhesion kinase (FAK) pathway. Atherosclerosis 208, 358-365. https://doi.org/10.1016/j.atherosclerosis.2009.07.046
- Li, G., Liu, E., Liu, T., Wang, J., Dai, J., Xu, G., Korantzopoulos, P., and Yang, W. (2011). Atrial electrical remodeling in a canine model of sinus node dysfunction. Int. J. Cardiol. 146, 32-36. https://doi.org/10.1016/j.ijcard.2009.06.002
- Li, P., Oparil, S., Novak, L., Cao, X., Shi, W., Lucas, J., and Chen, Y.F. (2007). ANP signaling inhibits TGF-beta-induced Smad2 and Smad3 nuclear translocation and extracellular matrix expression in rat pulmonary arterial smooth muscle cells. J. Appl. Physiol. 102, 390-398. https://doi.org/10.1152/japplphysiol.00468.2006
- Lindner, V., Wang, Q., Conley, B.A., Friesel, R.E., and Vary, C.P. (2005). Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler. Thromb. Vasc. Biol. 25, 77-83. https://doi.org/10.1161/01.ATV.0000149141.81230.c6
- Liu, R.X., Wang, Y.L., Li, H.B., Wang, N.N., Bao, M.J., and Xu, L.Y. (2012). Comparative study between original and traditional method in establishing a chronic sinus node damage model in rabbit. J. Appl. Physiol. 113, 1802-1808. https://doi.org/10.1152/japplphysiol.00480.2012
- Markwald, R.R., Norris, R.A., Moreno-Rodriguez, R., and Levine, R.A. (2010). Developmental basis of adult cardiovascular diseases: valvular heart diseases. Ann. N. Y. Acad. Sci. 1188, 177-183. https://doi.org/10.1111/j.1749-6632.2009.05098.x
- Maruhashi, T., Kii, I., Saito, M., and Kudo, A. (2010). Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J. Biol. Chem. 285, 13294-13303. https://doi.org/10.1074/jbc.M109.088864
- Medi, C., Kalman, J.M., Ling, L.H., Teh, A.W., Lee, G., Lee, G., Spence, S.J., Kaye, D.M., and Kistler, P.M. (2012). Atrial electrical and structural remodeling associated with longstanding pulmonary hypertension and right ventricular hypertrophy in humans. J. Cardiovasc. Electrophysiol. 23, 614-620. https://doi.org/10.1111/j.1540-8167.2011.02255.x
- Morillo, C.A., Klein, G.J., Jones, D.L., and Guiraudon, C.M. (1995). Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91, 1588-1595. https://doi.org/10.1161/01.CIR.91.5.1588
- Morton, J.B., Sanders, P., Vohra, J.K., Sparks, P.B., Morgan, J.G., Spence, S.J., Grigg, L.E., and Kalman, J.M. (2003). Effect of chronic right atrial stretch on atrial electrical remodeling in patients with an atrial septal defect. Circulation 107, 1775-1782. https://doi.org/10.1161/01.CIR.0000058164.68127.F2
- Mu, Y., Gudey, S.K., and Landstrom, M. (2012). Non-Smad signaling pathways. Cell Tissue Res. 347, 11-20. https://doi.org/10.1007/s00441-011-1201-y
- Mulla, W., Hajaj, B., Elyagon, S., Mor, M., Gillis, R., Murninkas, M., Klapper- Goldstein, H., Plaschkes, I., Chalifa-Caspi, V., Etzion, S., et al. (2019). Rapid atrial pacing promotes atrial fibrillation substrate in unanesthetized instrumented rats. Front. Physiol. 10, 1218. https://doi.org/10.3389/fphys.2019.01218
- Nielsen, J.C., Thomsen, P.E., Hojberg, S., Moller, M., Vesterlund, T., Dalsgaard, D., Mortensen, L.S., Nielsen, T., Asklund, M., Friis, E.V., et al. (2011). A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome. Eur. Heart J. 32, 686-696. https://doi.org/10.1093/eurheartj/ehr022
- Norris, R.A., Damon, B., Mironov, V., Kasyanov, V., Ramamurthi, A., Moreno-Rodriguez, R., Trusk, T., Potts, J.D., Goodwin, R.L., Davis, J., et al. (2007). Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J. Cell. Biochem. 101, 695-711. https://doi.org/10.1002/jcb.21224
- Oka, T., Xu, J., Kaiser, R.A., Melendez, J., Hambleton, M., Sargent, M.A., Lorts, A., Brunskill, E.W., Dorn, G.W., 2nd, Conway, S.J., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 101, 313-321. https://doi.org/10.1161/CIRCRESAHA.107.149047
- Pinto, A.R., Ilinykh, A., Ivey, M.J., Kuwabara, J.T., D'Antoni, M.L., Debuque, R., Chandran, A., Wang, L., Arora, K., Rosenthal, N.A., et al. (2016). Revisiting cardiac cellular composition. Circ. Res. 118, 400-409. https://doi.org/10.1161/CIRCRESAHA.115.307778
- Platonov, P.G. (2017). Atrial fibrosis: an obligatory component of arrhythmia mechanisms in atrial fibrillation? J. Geriatr. Cardiol. 14, 233-237.
- Prakoura, N. and Chatziantoniou, C. (2017). Periostin and discoidin domain receptor 1: new biomarkers or targets for therapy of renal disease. Front. Med. (Lausanne) 4, 52. https://doi.org/10.3389/fmed.2017.00052
-
Rahmutula, D., Zhang, H., Wilson, E.E., and Olgin, J.E. (2019). Absence of natriuretic peptide clearance receptor attenuates TGF-
${\beta}1$ -induced selective atrial fibrosis and atrial fibrillation. Cardiovasc. Res. 115, 357. https://doi.org/10.1093/cvr/cvy224 - Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 63, 423-432. https://doi.org/10.1016/j.cardiores.2004.04.030
- Sanders, P., Morton, J.B., Kistler, P.M., Spence, S.J., Davidson, N.C., Hussin, A., Vohra, J.K., Sparks, P.B., and Kalman, J.M. (2004). Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation 109, 1514-1522. https://doi.org/10.1161/01.CIR.0000121734.47409.AA
- Shi, Y. and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700. https://doi.org/10.1016/S0092-8674(03)00432-X
- Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., Saito, M., Fukuda, K., Nishiyama, T., Kitajima, S., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. J. Exp. Med. 205, 295-303. https://doi.org/10.1084/jem.20071297
- Shinde, A.V., Humeres, C., and Frangogiannis, N.G. (2017). The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 298-309. https://doi.org/10.1016/j.bbadis.2016.11.006
- Silver, M.A., Pick, R., Brilla, C.G., Jalil, J.E., Janicki, J.S., and Weber, K.T. (1990). Reactive and reparative fibrillar collagen remodelling in the hypertrophied rat left ventricle: two experimental models of myocardial fibrosis. Cardiovasc. Res. 24, 741-747. https://doi.org/10.1093/cvr/24.9.741
- Snider, P., Hinton, R.B., Moreno-Rodriguez, R.A., Wang, J., Rogers, R., Lindsley, A., Li, F., Ingram, D.A., Menick, D., Field, L., et al. (2008). Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ. Res. 102, 752-760. https://doi.org/10.1161/CIRCRESAHA.107.159517
- Taniyama, Y., Katsuragi, N., Sanada, F., Azuma, J., Iekushi, K., Koibuchi, N., Okayama, K., Ikeda-Iwabu, Y., Muratsu, J., Otsu, R., et al. (2016). Selective blockade of periostin exon 17 preserves caediac performance in acute myocardial infarction. Hypertension 67, 356-361. https://doi.org/10.1161/HYPERTENSIONAHA.115.06265
- Thanigaimani, S., Lau, D.H., Agbaedeng, T., Elliott, A.D., Mahajan, R., and Sanders, P. (2017). Molecular mechanisms of atrial fibrosis: implications for the clinic. Expert Rev. Cardiovasc. Ther. 15, 247-256. https://doi.org/10.1080/14779072.2017.1299005
- Wang, D., Oparil, S., Feng, J.A., Li, P., Perry, G., Chen, L.B., Dai, M., John, S.W., and Chen, Y.F. (2003). Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42, 88-95. https://doi.org/10.1161/01.HYP.0000074905.22908.A6
- Weber, K.T., Sun, Y., Bhattacharya, S.K., Ahokas, R.A., and Gerling, I.C. (2013). Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10, 15-26. https://doi.org/10.1038/nrcardio.2012.158
- Wijffels, M.C., Kirchhof, C.J., Dorland, R., and Allessie, M.A. (1995). Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954-1968. https://doi.org/10.1161/01.CIR.92.7.1954
- Wilkes, M.C. and Leof, E.B. (2006). Transforming growth factor beta activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. J. Biol. Chem. 281, 27846-27854. https://doi.org/10.1074/jbc.M603721200
- Wu, H., Chen, L., Xie, J., Li, R., Li, G.N., Chen, Q.H., Zhang, X.L., Kang, L.N., and Xu, B. (2016). Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension. Mol. Med. Rep. 14, 776-782. https://doi.org/10.3892/mmr.2016.5308
- Xie, Y., Garfinkel, A., Camelliti, P., Kohl, P., Weiss, J.N., and Qu, Z. (2009). Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study. Heart Rhythm 6, 1641-1649. https://doi.org/10.1016/j.hrthm.2009.08.003
- Yamaguchi, Y. (2014). Periostin in skin tissue skin-related diseases. Allergol. Int. 63, 161-170. https://doi.org/10.2332/allergolint.13-RAI-0685
- Zhao, S., Wu, H., Xia, W., Chen, X., Zhu, S., Zhang, S., Shao, Y., Ma, W., Yang, D., and Zhang, J. (2014). Periostin expression is upregulated and associated with myocardial fibrosis in human failing hearts. J. Cardiol. 63, 373-378. https://doi.org/10.1016/j.jjcc.2013.09.013
- Zhao, Y., Wang, C., Wang, C., Hong, X., Miao, J., Liao, Y., Zhou, L., and Liu, Y. (2018). An essential role for Wnt/beta-catenin signaling in mediating hypertensive heart disease. Sci. Rep. 8, 8996. https://doi.org/10.1038/s41598-018-27064-2
- Zhong, H., Wang, T., Lian, G., Xu, C., Wang, H., and Xie, L. (2018). TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling. Heart Vessels 33, 1094-1105. https://doi.org/10.1007/s00380-018-1146-0
- Ziyadeh-Isleem, A., Clatot, J., Duchatelet, S., Gandjbakhch, E., Denjoy, I., Hidden-Lucet, F., Hatem, S., Deschenes, I., Coulombe, A., Neyroud, N., et al. (2014). A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm 11, 1015-1023. https://doi.org/10.1016/j.hrthm.2014.02.021
Cited by
- Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling vol.10, pp.11, 2020, https://doi.org/10.3390/cells10113175