• Title/Summary/Keyword: RUNX

Search Result 163, Processing Time 0.025 seconds

Comparative Evaluation of Fibrin for Bone Regeneration in Critical Size Calvarial Defects

  • Song, Gin-Ah;Kim, Soung Min;Woo, Kyung Mi
    • International Journal of Oral Biology
    • /
    • v.39 no.3
    • /
    • pp.153-157
    • /
    • 2014
  • Natural biopolymers such as collagen and fibrin have been widely used in bone regenerative applications. Despite the frequent use, their comparative biological propertiesis are largely unknown. In a previous study, we found the superiority of fibrin to collagen in the adsorption of serum proteins and the proliferation and differentiation of cultured osteoblasts. In this study, we used an in vivo model to evaluate how effectively fibrin supports bone regeneration, as compared with collagen. Collagen and fibrin were placed in critical size defects made on rat calvarial bones. Compared with collagen, fibrin supported substantially more new bone tissue formation, which was confirmed by micro-CT measurement and histological analyses. The cells in the regenerative tissues of the fibrin-filled defects were immunostained strongly for Runx2, while collagen-placed defects were stained weakly. These in vivo results demonstrate that fibrin is superior to collagen in supporting bone regeneration.

Analysis of Gene Expression in Cyclooxygenase-2-Overexpressed Human Osteosarcoma Cell Lines

  • Han, Jeong A.;Kim, Ji-Yeon;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2014
  • Osteosarcoma is the most common primary bone tumor, generally affecting young people. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that cyclooxygenase-2 (COX-2) plays a critical role in the proliferation, migration, and invasion of osteosarcoma cells. To understand the mechanism of action of COX-2 in the pathogenesis of osteosarcoma, we compared gene expression patterns between three stable COX-2-overexpressing cell lines and three control cell lines derived from U2OS human osteosarcoma cells. The data showed that 56 genes were upregulated, whereas 20 genes were downregulated, in COX-2-overexpressed cell lines, with an average fold-change > 1.5. Among the upregulated genes, COL1A1, COL5A2, FBN1, HOXD10, RUNX2, and TRAPPC2 are involved in bone and skeletal system development, while DDR2, RAC2, RUNX2, and TSPAN31 are involved in the positive regulation of cell proliferation. Among the downregulated genes, HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C are involved in nucleosome assembly and DNA packaging. These results may provide useful information to elucidate the molecular mechanism of the COX-2-mediated malignant phenotype in osteosarcoma.

Lineage re-commitment of CD4CD8αα intraepithelial lymphocytes in the gut

  • Park, Yunji;Moon, Sook-Jin;Lee, Seung-Woo
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • The gastrointestinal tract forms the largest surface in our body with constantly being exposed to various antigens, which provides unique microenvironment for the immune system in the intestine. Accordingly, the gut epithelium harbors the most T lymphocytes in the body as intraepithelial lymphocytes (IELs), which are phenotypically and functionally heterogeneous populations, distinct from the conventional mature T cells in the periphery. IELs arise either from pre-committed thymic precursors (natural IELs) or from conventional CD4 or CD8αβ T cells in response to peripheral antigens (induced IELs), both of which commonly express CD8α homodimers (CD8αα). Although lineage commitment to either conventional CD4 T helper (Th) or cytotoxic CD8αβ T cells as well as their respective co-receptor expression are mutually exclusive and irreversible process, CD4 T cells can be redirected to the CD8 IELs with high cytolytic activity upon migration to the gut epithelium. Recent reports show that master transcription factors for CD4 and CD8 T cells, ThPOK (Th-inducing BTB/POZ-Kruppel-like factor) and Runx3 (Runt related transcription factor 3), respectively, are the key regulators for re-programming of CD4 T cells to CD8 lineage in the intestinal epithelium. This review will focus on the unique differentiation process of IELs, particularly lineage re-commitment of CD4 IELs. [BMB Reports 2016; 49(1): 11-17]

Role of RUNX Family Members in G1 Restriction-Point Regulation

  • Lee, Jung-Won;Bae, Suk-Chul
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.182-187
    • /
    • 2020
  • When cells are stimulated by growth factors, they make a critical choice in early G1 phase: proceed forward to S phase, remain in G1, or revert to G0 phase. Once the critical decision is made, cells execute a fixed program independently of extracellular signals. The specific stage at which the critical decision is made is called the restriction point or R-point. The existence of the R-point raises a major question: what is the nature of the molecular machinery that decides whether or not a cell in G1 will continue to advance through the cell cycle or exit from the cell cycle? The R-point program is perturbed in nearly all cancer cells. Therefore, exploring the nature of the R-point decision-making machinery will provide insight into how cells consult extracellular signals and intracellular status to make an appropriate R-point decision, as well into the development of cancers. Recent studies have shown that expression of a number of immediate early genes is associated with the R-point decision, and that the decision-making program constitutes an oncogene surveillance mechanism. In this review, we briefly summarize recent findings regarding the mechanisms underlying the context-dependent R-point decision.

Soluble fraction from silk mat induced bone morphogenic protein in RAW264.7 cells

  • Kim, Seong-Gon;Jo, You-Young;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.51-55
    • /
    • 2020
  • The objective of this study was to evaluate the changes in gene expression after incubation of cells with soluble fraction from different silk mat layers. A silk cocoon from Bombyx mori was separated into 4 layers of equal thickness. The layers were numbered from 1 to 4 (from the inner to outer layer). Each silk mat was placed into normal saline and collected soluble fraction. They were administered to RAW264.7 cells, and changes in the expression of genes were evaluated by cDNA microarray analysis. Layer 1 and 4 groups showed significantly higher expression of BMP-2 at 8 h after administration of soluble fraction (P < 0.05). Runx2 expression was significantly higher in Layer 4 group at 8h (P < 0.05). The silk mat from the innermost and outermost portion of the silkworm cocoon showed a significant change in the expression of genes that are associated with osteoinduction such as BMP-2 and runx2.

Melanin extract from Gallus gallus domesticus promotes proliferation and differentiation of osteoblastic MG-63 cells via bone morphogenetic protein-2 signaling

  • Yoo, Han-Seok;Chung, Kang-Hyun;Lee, Kwon-Jai;Kim, Dong-Hee;An, Jeung Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Gallus gallus domesticus (GD) is a natural mutant breed of chicken in Korea with an atypical characterization of melanin in its tissue. This study investigated the effects of melanin extracts of GD on osteoblast differentiation and inhibition of osteoclast formation. MATERIALS/METHODS: The effects of the melanin extract of GD on human osteoblast MG-63 cell differentiation were examined by evaluating cell viability, osteoblast differentiation, and expression of osteoblast-specific transcription factors such as bone morphogenetic protein 2 (BMP-2), small mothers against decapentaplegic homologs 5 (SMAD5), runt-related transcription factor 2 (RUNX2), osteocalcin and type 1 collagen (COL-1) by reverse transcription-polymerase chain reaction and western blotting analysis. We investigated the inhibitory effect of melanin on the osteoclasts formation through tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains in Raw 264.7 cell. RESULTS: The melanin extract of GD was not cytotoxic to MG-63 cells at concentrations of $50-250{\mu}g/mL$. Alkaline phosphatase (ALP) activity and bone mineralization of melanin extract-treated cells increased in a dose-dependent manner from 50 to $250{\mu}g/mL$ and were 149% and 129% at $250{\mu}g/mL$ concentration, respectively (P < 0.05). The levels of BMP-2, osteocalcin, and COL-1 gene expression were significantly upregulated by 1.72-, 4.44-, and 2.12-fold in melanin-treated cells than in the control cells (P < 0.05). The levels of RUNX2 and SMAD5 proteins were higher in melanin-treated cells than in control vehicle-treated cells. The melanin extract attenuated the formation of receptor activator of nuclear factor kappa-B ligand-induced TRAP-positive multinucleated RAW 264.7 cells by 22%, and was 77% cytotoxic to RAW 264.7 macrophages at a concentration of $500{\mu}g/mL$. CONCLUSIONS: This study provides evidence that the melanin extract promoted osteoblast differentiation by activating BMP/SMADs/RUNX2 signaling and regulating transcription of osteogenic genes such as ALP, type I collagen, and osteocalcin. These results suggest that the effective osteoblastic differentiation induced by melanin extract from GD makes it potentially useful in maintaining bone health.

Evaluation of bone substitutes for treatment of peri-implant bone defects: biomechanical, histological, and immunohistochemical analyses in the rabbit tibia

  • dos Santos, Pamela Leticia;de Molon, Rafael Scaf;Queiroz, Thallita Pereira;Okamoto, Roberta;de Souza Faloni, Ana Paula;Gulinelli, Jessica Lemos;Luvizuto, Eloa Rodrigues;Garcia, Idelmo Rangel Junior
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.176-196
    • /
    • 2016
  • Purpose: We sought to evaluate the effectiveness of bone substitutes in circumferential periimplant defects created in the rabbit tibia. Methods: Thirty rabbits received 45 implants in their left and right tibia. A circumferential bone defect (6.1 mm in diameter/4 mm depth) was created in each rabbit tibia using a trephine bur. A dental implant ($4.1mm{\times}8.5mm$) was installed after the creation of the defect, providing a 2-mm gap. The bone defect gaps between the implant and the bone were randomly filled according to the following groups: blood clot (CO), particulate Bio-Oss$^{(R)}$ (BI), and Bio-Oss$^{(R)}$ Collagen (BC). Ten animals were euthanized after periods of 15, 30, and 60 days. Biomechanical analysis by means of the removal torque of the implants, as well as histologic and immunohistochemical analyses for protein expression of osteocalcin (OC), Runx2, OPG, RANKL, and TRAP were evaluated. Results: For biomechanics, BC showed a better biological response ($61.00{\pm}15.28Ncm$) than CO ($31.60{\pm}14.38Ncm$) at 30 days. Immunohistochemical analysis showed significantly different OC expression in CO and BC at 15 days, and also between the CO and BI groups, and between the CO and BC groups at 60 days. After 15 days, Runx2 expression was significantly different in the BI group compared to the CO and BC groups. RANKL expression was significantly different in the BI and CO groups and between the BI and BC groups at 15 days, and also between the BI and CO groups at 60 days. OPG expression was significantly higher at 60 days postoperatively in the BI group than the CO group. Conclusions: Collectively, our data indicate that, compared to CO and BI, BC offered better bone healing, which was characterized by greater RUNX2, OC, and OPG immunolabeling, and required greater reversal torque for implant removal. Indeed, along with BI, BC presents promising biomechanical and biological properties supporting its possible use in osteoconductive grafts for filling peri-implant gaps.

Effects of Mineral Trioxide Aggregate on the Proliferation and Differentiation of Human Dental Pulp Stromal Cells from Permanent and Deciduous Teeth (Mineral trioxide aggregate가 유치 및 영구치의 치수기질세포 증식 및 분화에 미치는 영향)

  • Kim, Seunghye;Jeon, Mijeong;Shin, Dong Min;Lee, Jae Ho;Song, Je Seon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.185-193
    • /
    • 2013
  • Mineral trioxide aggregate (MTA) has recently been used as a pulpotomy medicament for primary molars. The aim of this study was to evaluate and compare the proliferation and differentiation potential of dental pulp stromal cells of permanent teeth and deciduous teeth cultured on MTA-coated surface. Human dental pulp stromal cells were obtained from human permanent premolars and deciduous teeth and cultured on MTA-coated culture plates. The cells were subjected to proliferation assay and cell cycle analysis. Their differentiation potential was evaluated by analysing changes in the mRNA expressions of runt-related transcriptional factor 2 (Runx2) and alkaline phosphatase (ALP). Morphological changes of cells in direct contact with MTA were observed using scanning electron microscopy (SEM). The proliferation rates, distribution of cell cycles and mRNA expression patterns of Runx2 and ALP were similar in both types of pulpal cells. SEM observations revealed that both types changed into more dendrite-like cells. On the surface of MTA, human dental pulp stromal cells from deciduous and permanent teeth were able to both proliferate and differentiate into cells that induce mineralization. MTA is suitable as a biocompatible pulpotomy medicament for primary teeth.

Effect of Simvastatin collagen graft on wound healing of defective bone (Simvastatin이 골결손부 회복에 미치는 영향)

  • Kang, Jung-Ho;Kim, Gyu-Tae;Choi, Yong-Suk;Lee, Hyeon-Woo;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.133-146
    • /
    • 2008
  • Purpose : To observe and evaluate the effects of Simvastatin-induced osteogenesis on the wound healing of defective bone. Materials and Methods : 64 defective bones were created in the parietal bone of 32 New Zealand White rabbits. The defects were grafted with collagen matrix carriers mixed with Simvastatin solution in the experimental group of 16 rabbits and with collagen matrix carriers mixed with water in the controlled group. The rabbits were terminated at an interval of 3, 5, 7, and 9 days, 2, 4, 6, and 8 weeks after the formation of defective bone. The wound healing was evaluated by soft X-ray radiography. The tissues within defective bones were evaluated through the analysis of flow cytometry for the manifestation of Runx2 and Osteocalcin, and observed histopathologically by using H-E stain and Masson's trichrome stain. Results : 1. In the experimental group, flow cytometry revealed more manifestation of Runx2 at 5, 7, and 9 days and Osteocalcin at 2 weeks than in the controlled groups, but there was few difference in comparison with the controlled group. 2. In the experimental group, flow cytometry revealed considerably more cells and erythrocytes at 5, 7, and 9 days in comparison with the controlled group. 3. In the experimental group, soft x-ray radiography revealed the extended formation of trabeculation at 2, 4, 6, and 8 weeks. 4. Histopathological features of the experimental group showed more fibroblasts and newly formed vessels at 5 and 7 days, and the formation of osteoid tissues at 9 days, and the newly formed trabeculations at 4 and 6 weeks. Conclusion : As the induced osteogenesis by Simvastatin, there was few contrast of the manifestation between Runx2 and Osteocalcin based on the differentiation of osteoblasts. But it was considered that the more formation of cells and erythrocytes depending on newly formed vessels in the experimental group obviously had an effect on the bone regeneration.

  • PDF

Importance of FISH combined with Morphology, Immunophenotype and Cytogenetic Analysis of Childhood/Adult Acute Lymphoblastic Leukemia in Omani Patients

  • Goud, Tadakal Mallana;Al Salmani, Kamla Khalfan;Al Harasi, Salma Mohammed;Al Musalhi, Muhanna;Wasifuddin, Shah Mohammed;Rajab, Anna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7343-7350
    • /
    • 2015
  • Genetic changes associated with acute lymphoblastic leukemia (ALL) provide very important diagnostic and prognostic information with a direct impact on patient management. Detection of chromosome abnormalities by conventional cytogenetics combined with fluorescence in situ hybridization (FISH) play a very significant role in assessing risk stratification. Identification of specific chromosome abnormalities has led to the recognition of genetic subgroups based on reciprocal translocations, deletions and modal number in B or T-cell ALL. In the last twelve years 102 newly diagnosed childhood/adult ALL bone marrow samples were analysed for chromosomal abnormalities with conventional G-banding, and FISH (selected cases) using specific probes in our hospital. G-banded karyotype analysis found clonal numerical and/or structural chromosomal aberrations in 74.2% of cases. Patients with pseudodiploidy represented the most frequent group (38.7%) followed by high hyperdiploidy group (12.9%), low hyperdiploidy group (9.7%), hypodiploidy (<46) group (9.7%) and high hypertriploidy group (3.2%). The highest observed numerical chromosomal alteration was high hyperdiploidy (12.9%) with abnormal karyotypes while abnormal 12p (7.5%) was the highest observed structural abnormality followed by t(12;21)(p13.3;q22) resulting in ETV6/RUNX1 fusion (5.4%) and t(9;22)(q34.1;q11.2) resulting in BCR/ABL1 fusion (4.3%). Interestingly, we identified 16 cases with rare and complex structural aberrations. Application of the FISH technique produced major improvements in the sensitivity and accuracy of cytogenetic analysis with ALL patients. In conclusion it confirmed heterogeneity of ALL by identifying various recurrent chromosomal aberrations along with non-specific rearrangements and their association with specific immunophenotypes. This study pool is representative of paediatric/adult ALL patients in Oman.