Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0319

Role of RUNX Family Members in G1 Restriction-Point Regulation  

Lee, Jung-Won (Department of Biochemistry, College of Medicine, Chungbuk National University)
Bae, Suk-Chul (Department of Biochemistry, College of Medicine, Chungbuk National University)
Abstract
When cells are stimulated by growth factors, they make a critical choice in early G1 phase: proceed forward to S phase, remain in G1, or revert to G0 phase. Once the critical decision is made, cells execute a fixed program independently of extracellular signals. The specific stage at which the critical decision is made is called the restriction point or R-point. The existence of the R-point raises a major question: what is the nature of the molecular machinery that decides whether or not a cell in G1 will continue to advance through the cell cycle or exit from the cell cycle? The R-point program is perturbed in nearly all cancer cells. Therefore, exploring the nature of the R-point decision-making machinery will provide insight into how cells consult extracellular signals and intracellular status to make an appropriate R-point decision, as well into the development of cancers. Recent studies have shown that expression of a number of immediate early genes is associated with the R-point decision, and that the decision-making program constitutes an oncogene surveillance mechanism. In this review, we briefly summarize recent findings regarding the mechanisms underlying the context-dependent R-point decision.
Keywords
BRD; PcG complex; restriction point; RUNX; TrxG complex;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cheng, M., Olivier, P., Diehl, J.A., Fero, M., Roussel, M.F., Roberts, J.M., and Sherr, C.J. (1999). The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571-1583.   DOI
2 Chi, X.Z., Lee, J.W., Lee, Y.S., Park, I.Y., Ito, Y., and Bae, S.C. (2017). Runx3 plays a critical role in restriction-point and defense against cellular transformation. Oncogene 36, 6884-6894.   DOI
3 Denis, G.V., McComb, M.E., Faller, D.V., Sinha, A., Romesser, P.B., and Costello, C.E. (2006). Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J. Proteome Res. 5, 502-511.   DOI
4 Efeyan, A. and Serrano, M. (2007). p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle 6, 1006-1010.   DOI
5 Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., et al. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214-231.   DOI
6 Imbalzano, A.N., Kwon, H., Green, M.R., and Kingston, R.E. (1994). Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481-485.   DOI
7 Ito, K., Lim, A.C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L.S., Lee, C.W., Voon, D.C., Koo, J.K., Wang, H., et al. (2008). RUNX3 attenuates betacatenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14, 226-237.   DOI
8 Ito, Y., Bae, S.C., and Chuang, L.S. (2015). The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15, 81-95.   DOI
9 Kamijo, T., Zindy, F., Roussel, M.F., Quelle, D.E., Downing, J.R., Ashmun, R.A., Grosveld, G., and Sherr, C.J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649-659.   DOI
10 LaBaer, J., Garrett, M.D., Stevenson, L.F., Slingerland, J.M., Sandhu, C., Chou, H.S., Fattaey, A., and Harlow, E. (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11, 847-862.   DOI
11 Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019a). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restrictionpoint. Nat. Commun. 10, 1897.   DOI
12 Lee, J.W., Park, T.G., and Bae, S.C. (2019b). Involvement of RUNX and BRD family members in restriction point. Mol. Cells 42, 836-839.   DOI
13 Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616.   DOI
14 LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell 30, 51-60.   DOI
15 Malumbres, M. and Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. Nat. Rev. Cancer 1, 222-231.   DOI
16 Michieli, P., Chedid, M., Lin, D., Pierce, J.H., Mercer, W.E., and Givol, D. (1994). Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res. 54, 3391-3395.
17 Belkina, A.C. and Denis, G.V. (2012). BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 12, 465-477.   DOI
18 Mills, A.A. (2010). Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer 10, 669-682.   DOI
19 Nurse, P. (2000). The incredible life and times of biological cells. Science 289, 1711-1716.   DOI
20 Palmero, I., Pantoja, C., and Serrano, M. (1998). p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125-126.   DOI
21 Blagosklonny, M.V. (2006). Cell senescence: hypertrophic arrest beyond the restriction point. J. Cell. Physiol. 209, 592-597.   DOI
22 Zetterberg, A. and Larsson, O. (1985). Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl. Acad. Sci. U. S. A. 82, 5365-5369.   DOI
23 Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043.   DOI
24 Sherr, C.J. and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501-1512.   DOI
25 Sherr, C.J. and Roberts, J.M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699-2711.   DOI
26 Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45.   DOI
27 Vignali, M., Hassan, A.H., Neely, K.E., and Workman, J.L. (2000). ATPdependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899-1910.   DOI
28 Weinberg, R.A. (2014). Chapter 8: pRb and control of the cell cycle clock. In The Biology of Cancer, 2nd Edition, R.A. Weinberg, ed. (New York: Garland Science), pp. 275-329.
29 Zaret, K.S. and Carroll, J.S. (2011). Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227-2241.   DOI
30 Zetterberg, A., Larsson, O., and Wiman, K.G. (1995). What is the restriction point? Curr. Opin. Cell Biol. 7, 835-842.   DOI
31 Pardee, A.B. (1974). A restriction point for control of normal animal cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 71, 1286-1290.   DOI