1 |
Wang L, Wildt KF, Castro E et al (2008) The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity, 29, 876-887
DOI
|
2 |
Reis BS, Hoytema van Konijnenburg DP, Grivennikov SI et al (2014) Transcription Factor T-bet Regulates Intraepithelial Lymphocyte Functional Maturation. Immunity 41, 244-256
DOI
|
3 |
Quezada SA, Simpson TR, Peggs KS et al (2010) Tumorreactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207, 637-650
DOI
|
4 |
Xie Y, Akpinarli A, Maris C et al (2010) Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J Exp Med 207, 651-667
DOI
|
5 |
Appay V (2004) The physiological role of cytotoxic CD4+ T-cells: the holy grail? Clin Exp Immunol 138, 10-13
DOI
|
6 |
He X, He X, Dave VP et al (2005) The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826-833
DOI
|
7 |
Brown DM (2010) Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cell Immunol 262, 89-95
DOI
|
8 |
Cheroutre H and Husain MM (2013) CD4 CTL: Living up to the challenge. Semin Immunol 25, 273-281
DOI
|
9 |
Sasahara T, Tamauchi H, Ikewaki N et al (1994) Unique properties of a cytotoxic CD4+CD8+ intraepithelial T-cell line established from the mouse intestinal epithelium. Microbiol Immunol 38, 191-199
DOI
|
10 |
Sun G, Liu X, Mercado P et al (2005) The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat Immunol 6, 373-381
DOI
|
11 |
Setoguchi R, Tachibana M, Naoe Y et al (2008) Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822-825
DOI
|
12 |
He X, Park K, and Kappes DJ (2010) The role of ThPOK in control of CD4/CD8 lineage commitment. Annu Rev Immunol 28, 295-320
DOI
|
13 |
Collins A, Littman DR, and Taniuchi I (2009) RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat Rev Immunol 9, 106-115
DOI
|
14 |
Sato T, Ohno S, Hayashi T et al (2005) Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317-328
DOI
|
15 |
Shires J, Theodoridis E and Hayday AC (2001) Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419-434
DOI
|
16 |
Mueller S, Buhler-Jungo M, and Mueller C (2000) Intestinal intraepithelial lymphocytes exert their potent protective cytotoxic activity during acute virus infection. J Immunol 164, 1986-1994
DOI
|
17 |
Yang H, Antony PA, Wildhaber BE and Teitelbaum DH (2004) Intestinal intraepithelial lymphocyte gamma delta-T cell derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol 172, 4151-4158
DOI
|
18 |
Hansen SG, Vieville C, Whizin N et al (2009) Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15, 293-299
DOI
|
19 |
Hansen SG, Ford JC, Lewis MS et al (2011) Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523-527
DOI
|
20 |
Dharakul T, Labbe M, Cohen J et al (1991) Immunization with baculovirus-expressed recombinant rotavirus proteins VP1, VP4, VP6, and VP7 induces CD8+ T lymphocytes that mediate clearance of chronic rotavirus infection in SCID mice. J Virol 65, 5928-5932
|
21 |
Sugimoto K, Ogawa A, Mizoguchi E et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118, 534-544
|
22 |
McGeachy MJ, Bak-Jensen KS, Chen Y et al (2007) TGF-βand IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol 8, 1390-1397
DOI
|
23 |
Appay V, Zaunders JJ, Papagno L et al (2002) Characterization of CD4+ CTLs ex vivo. J Immunol 168, 5954-5958
DOI
|
24 |
Hamann A, Andrew DP, Jablonski-Westrich D et al (1994) Role of α4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol 152, 3282-3293
|
25 |
Ericsson A, Svensson M, Arya A, and Agace WW (2004) CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes. Eur J Immunol 34, 2720-729
DOI
|
26 |
Kantele A, Zivny J, Hakkinen M et al (1999) Differential homing commitments of antigen-specific T cells after oral or parenteral immunization in humans. J Immunol 162, 5173-5177
|
27 |
Svensson M, Marsal J, Ericsson A et al (2002) CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J Clin Invest 110, 1113-1121
DOI
|
28 |
Andrew DP, Rott LS, Kilshaw PJ et al (1996) Distribution of α4β7 and αEβ7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. Eur J Immunol 26, 897-905
DOI
|
29 |
Cepek KL, Shaw SK, Parker CM et al (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372, 190-193
DOI
|
30 |
El-Asady R, Yuan R, Liu K et al (2005) TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J Exp Med 201, 1647-1657
DOI
|
31 |
Poussier P, Ning T, Banerjee D et al (2002) A unique subset of self-specific intraintestinal T cells maintains gut integrity. J Exp Med 195, 1491-1497
DOI
|
32 |
Denning TL, Granger SW, Mucida D et al (2007) Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J Immunol 178, 4230-4239
DOI
|
33 |
Kanamori Y, Ishimaru K, Nanno M et al (1996) Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 184, 1449-1459
DOI
|
34 |
Eberl G and Littman D (2004) Thymic origin of intestinal alpha beta T cells revealed by fate-mapping of RoR-gamma-t+ cells. Science 305, 248-251
DOI
|
35 |
Saito H, Kanamori Y, Takemori T et al (1998) Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 280, 275-278
DOI
|
36 |
De Geus B, Van den Enden M, Coolen C et al (1990) Phenotype of intraepithelial lymphocytes in euthymic and athymic mice: implications for differentiation of cells bearing a CD3-associated γδ T cell receptor. Eur J Immunol 20, 291-298
DOI
|
37 |
Iwata M, Hirakiyama A, Eshima Y et al (2004) Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527-538
DOI
|
38 |
Naito T, Shiohara T, Hibi T et al (2008) RORγt is dispensable for the development of intestinal mucosal T cells. Mucosal Immunol 1, 198-207
DOI
|
39 |
Gangadharan D, Lambolez F, Attinger A et al (2006) Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631-641
DOI
|
40 |
Lambolez F, Kronenberg M, and Cheroutre H (2007) Thymic differentiation of TCRαβ+ CD8αα IELs. Immunol Rev 215, 178-188
DOI
|
41 |
Scott CL, Aumeunier AM, and Mowat AM (2011) Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 32, 412-419
DOI
|
42 |
Johansson-Lindbom B and Agace WW (2007) Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol Rev 215, 226-242
DOI
|
43 |
Cheroutre H (2005) IELs: enforcing law and order in the court of the intestinal epithelium. Immunol Rev 206, 114-131
DOI
|
44 |
Ferguson A and Parrott DM (1972) The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin Exp Immunol 12, 477-488
|
45 |
Cheroutre H, Lambolez F, and Mucida D (2011) The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11, 445-456
DOI
|
46 |
Mucida D, Husain MM, Muroi S et al (2013) Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol 14, 281-289
DOI
|
47 |
Hooper LV and Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10, 159-169
DOI
|
48 |
Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D (2013) Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat Immunol 14, 271-280
DOI
|
49 |
Guy-Grand D, Cerf-Bensussan N, Malissen B et al (1991) Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 173, 471-481
DOI
|
50 |
Badeira A, Itohara S, Bonneville M et al (1991) Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc Natl Acd Sci U S A 88, 43-47
DOI
|
51 |
Chetroutre H (2004) Starting at the beginning; new perspectives on the biology of mucosal T cells. Annu Rev Immunol 22, 217-246
DOI
|
52 |
Rocha B, Vassalli P, and Guy-Grand D (1994) Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J Exp Med 180, 681-686
DOI
|