• 제목/요약/키워드: RUNX

검색결과 163건 처리시간 0.019초

Low Frequency of ETV6-RUNX1 (t 12; 21) in Saudi Arabian Pediatric Acute Lymphoblastic Leukemia Patients: Association with Clinical Parameters and Early Remission

  • Aljamaan, Khaled;Aljumah, Talal khalid;Aloraibi, Saleh;Absar, Muhammad;Iqbal, Zafar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7523-7527
    • /
    • 2015
  • Background: Pediatric acute lymphoblastic leukemia (pALL) patients at King Abdulaziz Medical City represent a pure Saudi Arabian population. ETV6-RUNX1 positive pALL patients have good prognosis as compared to ETV6-RUNX1 negative counterparts. Therefore, frequencies of these two patient groups have a huge consideration in treatment strategies of pALL in a given population. Different geographical locations have been reported to have different frequencies of ETV6-RUNX1 ranging from 10% in Southeast Asia to 30% in Australia. Aim: Therefore, the objective of this study was to establish the ETV6-RUNX1 status of Saudi Arabian pALL patients and its association with clinical parameters and early remission. Materials and Methods: Clinical parameters and ETV6-RUNX1 status (using FISH technique) of pALL patients attending the Pediatric Oncology Clinic, King Abdulaziz Medical City, Riyadh from 2006 to 2011 were studied. Comparisons between ETV6-RUNX1 positive and negative groups were accomplished using chi-square test or Fisher's exact test. All statistical analyses were performed using SAS version 9.2 (SAS Institute, Inc., Cary, NC). Results: Out of 54 patients, 33 were male and 21 were females (ratio 1.57:1). B- and T-cell lineages were found in 47 (87%) and 7 (13%) patients respectively. Only 5 (9.3%) patients were ETV6-RUNX1 positive while 49(80.7%) were ETV6-RUNX1 negative. All ETV6-RUNX1 patients (100%) were of B-cell lineage and 80% (4/5) were in the 3-7 year age group. None of the ETV6-RUNX11 patients had ${\geq}5%$ blasts (no remission) at day 14 as compared with 9% in the ETV6-RUNX1 negative group (Figure 1). Conclusions: Frequency of ETV6-RUNX1 positive patients (less than 10%) in our pALL patients is much lower than reported for most European countries, North America, Australia and Japan while it is in accordance with ETV6-RUNX1 frequencies from Egypt (11.6%), Pakistan (10%), Spain (2%) and India (5-7%). This shows ethnic differences in genetics of pALL as well as higher frequencies of ETV6-RUNX1 positive pALL mostly in more industrialized countries, probably due to some industrial pollutants or westernized lifestyle.

The Clinical, Molecular, and Mechanistic Basis of RUNX1 Mutations Identified in Hematological Malignancies

  • Yokota, Asumi;Huo, Li;Lan, Fengli;Wu, Jianqiang;Huang, Gang
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.145-152
    • /
    • 2020
  • RUNX1 plays an important role in the regulation of normal hematopoiesis. RUNX1 mutations are frequently found and have been intensively studied in hematological malignancies. Germline mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). Somatic mutations of RUNX1 are observed in various types of hematological malignancies, such as AML, acute lymphoblastic leukemia (ALL), myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), chronic myelomonocytic leukemia (CMML), and congenital bone marrow failure (CBMF). Here, we systematically review the clinical and molecular characteristics of RUNX1 mutations, the mechanisms of pathogenesis caused by RUNX1 mutations, and potential therapeutic strategies to target RUNX1-mutated cases of hematological malignancies.

The Role of RUNX1 in NF1-Related Tumors and Blood Disorders

  • Na, Youjin;Huang, Gang;Wu, Jianqiang
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.153-159
    • /
    • 2020
  • Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. NF1 patients are predisposed to formation of several type solid tumors as well as to juvenile myelomonocytic leukemia. Loss of NF1 results in dysregulation of MAPK, PI3K and other signaling cascades, to promote cell proliferation and to inhibit cell apoptosis. The RUNX1 gene is associated with stem cell function in many tissues, and plays a key role in the fate of stem cells. Aberrant RUNX1 expression leads to context-dependent tumor development, in which RUNX1 may serve as a tumor suppressor or an oncogene in specific tissue contexts. The co-occurrence of mutation of NF1 and RUNX1 is detected rarely in several cancers and signaling downstream of RAS-MAPK can alter RUNX1 function. Whether aberrant RUNX1 expression contributes to NF1-related tumorigenesis is not fully understood. This review focuses on the role of RUNX1 in NF1-related tumors and blood disorders, and in sporadic cancers.

RUNX1 Mutations in the Leukemic Progression of Severe Congenital Neutropenia

  • Olofsen, Patricia A.;Touw, Ivo P.
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.139-144
    • /
    • 2020
  • Somatic RUNX1 mutations are found in approximately 10% of patients with de novo acute myeloid leukemia (AML), but are more common in secondary forms of myelodysplastic syndrome (MDS) or AML. Particularly, this applies to MDS/AML developing from certain types of leukemia-prone inherited bone marrow failure syndromes. How these RUNX1 mutations contribute to the pathobiology of secondary MDS/AML is still unknown. This mini-review focusses on the role of RUNX1 mutations as the most common secondary leukemogenic hit in MDS/AML evolving from severe congenital neutropenia (SCN).

Upregulation of smpd3 via BMP2 stimulation and Runx2

  • Chae, Young-Mi;Heo, Sun-Hee;Kim, Jae-Young;Lee, Jae-Mok;Ryoo, Hyun-Mo;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.86-90
    • /
    • 2009
  • Deletion of smpd3 induces osteogenesis and dentinogenesis imperfecta in mice. smpd3 is highly elevated in the parietal bones of developing mouse calvaria, but not in sutural mesenchymes. Here, we examine the mechanism of smpd3 regulation, which involves BMP2 stimulation of Runx2. smpd3 mRNA expression increased in response to BMP2 treatment and Runx2 transfection in C2C12 cells. The Runx2-responsive element (RRE) encoded within the -562 to -557 region is important for activation of the smpd3 promoter by Runx2. Electrophoretic mobility shift assays revealed that Runx2 binds strongly to the -355 to -350 RRE and less strongly to the -562 to -557 site. Thus, the smpd3 promoter is activated by BMP2 and is directly regulated by the Runx2 transcription factor. This novel description of smpd3 regulation will aid further studies of bone development and osteogenesis.

GATA4 negatively regulates bone sialoprotein expression in osteoblasts

  • Song, Insun;Jeong, Byung-chul;Choi, Yong Jun;Chung, Yoon-Sok;Kim, Nacksung
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.343-348
    • /
    • 2016
  • GATA4 has been reported to act as a negative regulator in osteoblast differentiation by inhibiting the Dlx5 transactivation of Runx2 via the attenuation of the binding ability of Dlx5 to the Runx2 promoter region. Here, we determine the role of GATA4 in the regulation of bone sialoprotein (Bsp) in osteoblasts. We observed that the overexpression of Runx2 or Sox9 induced the Bsp expression in osteoblastic cells. Silencing GATA4 further enhanced the Runx2- and Sox9-mediated Bsp promoter activity, whereas GATA4 overexpression down-regulated Bsp promoter activity mediated by Runx2 and Sox9. GATA4 also interacted with Runx2 and Sox9, by attenuating the binding ability of Runx2 and Sox9 to the Bsp promoter region. Our data suggest that GATA4 acts as a negative regulator of Bsp expression in osteoblasts.

Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night

  • Sweeney, Kerri;Cameron, Ewan R.;Blyth, Karen
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.188-197
    • /
    • 2020
  • Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.

RUNX1 Dosage in Development and Cancer

  • Lie-a-ling, Michael;Mevel, Renaud;Patel, Rahima;Blyth, Karen;Baena, Esther;Kouskoff, Valerie;Lacaud, Georges
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.126-138
    • /
    • 2020
  • The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • 제16권3호
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

Overexpression of RUNX3 Inhibits Malignant Behaviour of Eca109 Cells in Vitro and Vivo

  • Chen, Hua-Xia;Wang, Shuai;Wang, Zhou;Zhang, Zhi-Ping;Shi, Shan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1531-1537
    • /
    • 2014
  • Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.