• Title/Summary/Keyword: RTV silicone rubber

Search Result 20, Processing Time 0.024 seconds

Analysis of Surface Degradation on Accelerated UV-treated Polymeric Housing Materials for Outdoor Insulator (자외선 가속열화에 따른 옥외용 폴리머 절연재료의 표면열화 분석)

  • Yeon, Bok-Hui;Lee, Sang-Yong;Heo, Chang-Su;Sim, Dae-Seop;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.479-488
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were inverstigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-EDS, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=0, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Fabrication of the Superconducting Flux Flow Transistor Using the ICP Etching Method (ICP 장치를 이용한 초전도 자속 흐름 트랜지스터의 링크 제작)

  • Gang, Hyeong-Gon;Im, Yeon-Ho;Im, Seong-Hun;Choe, Hyo-Sang;Han, Yun-Bong;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.494-499
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were investigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-ES, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=O, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

One-component Room Temperature Vulcanizing-Type Silicone Rubber-Based Solid-State Carbonate Ion Selective Electrode (단일 조성 실온 경화형 실리콘러버를 지지체로 사용한 고체상 탄산이온선택성 전극의 개발)

  • Kim, Mi-Kyoung;Yoon, In-Jun;Cho, Sung-Ho;Shin, Hye-Ra;Han, Jong-Ho;Ha, Jeong-Han;Nam, Hak-Hyun;Cha, Geun-Sig
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • We developed a miniaturized solid-state carbonate ion-selective electrode (carbonate ISE) based on one-component room temperature vulcanizing type silicone rubber 730 (730 RTV) without adding plasticizer to the matrix. The optimized carbonate ion selective membrane is prepared with 85.8 wt% of 730 RTV, 11.1 wt% of trifluoroacetyl-p-decylbenzene (TFADB), and 3.1 wt% of tridodecyl-methylammonium chloride (TDMACl). This carbonate ISE exhibited excellent potentiometric properties (i.e., slope: 26.3 mV/dec; selectivity: $logKT^{pot}_{CO_{2},Cl^-}$= -4.00 and $logKT^{pot}_{TCO_{2},Sal^-}$=1.69); and detection limit for $TCO_2:\;4.0{\times}10^{-4}M$). In addition, the early potentiometric properties of the solid-state sensor with optimized membrane composition were not deteriorated for more than 60 days.

Improvement of surface insulation properties of engineering thermoplastics by using nano/micro composite (나노/마이크로 컴포지트를 이용한 엔지니어링 열가소성 플라스틱의 표면 절연 개선)

  • Jung, Eui-Hwan;Lim, Kee-Joe;Hur, Jun;Jeong, Jong-Hun;Kim, Pyung-Jung;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.29-29
    • /
    • 2010
  • Engineering plastics have excellent electrical properties, mechanical strength and various characteristic which include chemical resistance, environmental resistance, weatherability at a wide temperature range. It has good characteristic(light weight, good productivity) as compare with epoxy or porcelain insulators. However, engineering plastics not suited to outdoor insulator because it isn't hydrophobic. Therefore, to over come these critical problems, we improve the surface insulation characteristics of engineering plastic by coating micro-, nano- size inorganic fillers added to RTV-SIR(Room temperature vulcanized-silicone rubber) at this plastic surface. The effect is analyzed through salt-fog test, tracking test. In conclusion, the engineering plastic coated RTV with micro-$Al_2O_3$20[phr], nano-Al(OH)3 1 ~ 3[phr] improved much better than the others.

  • PDF

A Review of the Flashover Performance of High Voltage Insulators Constructed with Modern Insulating Materials

  • Khatoon, Shabana;Khan, Asfar Ali;Singh, Sakshi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.246-249
    • /
    • 2017
  • Pollution flashover of outdoor insulators is a common risk, which affects the safe operation of overhead transmission networks. Early electrical power systems, which feature insulators made from ceramic materials have been used all over the world with good performance. At present, non-ceramic insulators are in common use, as a result of their good electrical as well as mechanical properties. The aim of this paper is to discuss and compare the flashover performance of insulators typically used in power lines, such as, porcelain, ethylene-propylene-diene-monomer (EPDM) rubber, room temperature vulcanized (RTV) and high temperature vulcanized (HTV) coated silicone rubber. The effect of various parameters, including the severity of pollution, ice accumulation, and shade profile, are considered.. From the studies reviewed it was concluded that there is a distinct difference in the flashover voltages of different types of insulators, and the silicone provides the best flashover performance of all insulating materials.

Lightning Impulse Breakdown Characteristic of Dry-Air/Silicone Rubber Hybrid Insulation in Rod-Plane Electrode

  • Kwon, Jung-Hun;Seo, Cheong-Won;Kim, Yu-Min;Lim, Kee-Joe
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1181-1187
    • /
    • 2015
  • Sulfur hexafluoride (SF6) gas is used widely in electric power equipment such as Gas Insulated Switchgear (GIS), Gas Insulation transmission Line (GIL), and Gas Circuit Breaker (GCB). But applications of SF6 should be restricted because SF6 gas is one of the greenhouse effect gases. To reduce use of SF6 gas, a study on eco-friendly alternative insulation medium is needed. In this paper, we investigated lightning impulse (LI) breakdown of dry-air which is attracting attention as an ecofriendly alternative gas and the LI breakdown of hybrid insulation combined with dry-air and solid insulation (Room-Temperature Vulcanizing Silicone Rubber-RTV SIR) and dry-air in inhomogeneous fields according to gap distance and pressure. The experiment results showed that the LI breakdown strength of hybrid insulation system was higher than that of dry-air insulation system. It was verified that the development of technology related to eco-friendly power apparatus compact such GIS, GCB and GIL can be used as basic research data.

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.

Adhesion Behaviors of Semiconductive-Insulation Interfaced Liquid Silicone Rubber for EHV Cable Accessory (초고압 접속재용 반도전-절연체 액상실리콘 계면의 접착거동)

  • Yoon, Seung-Hoon;Kim, Hyun-Seok;Kim, Ji-Hwan;Lee, Jung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.123-127
    • /
    • 2003
  • 액상실리콘으로 이루어진 초고압전력케이블용 프리몰드 접속재의 반도전-절연체 계면접합체를 다양한 제조조건과 조합별로 제조하여 계면접착력에 대한 영향을 검토하였다. 후가교적용 시 계면접착력이 강화되며 grade조합에 따른 특성차이가 존재하였다. 하지만 고온 장시간의 후가교 조건에서는 계면간의 화학적 결합력의 저하로 인해 오히려 접착력이 낮아지기도 하였다. 절연 RTV와의 계면접착성은 S-1재료가, 절연 LSR의 경우에는 S-3 재료가 가장 우수하였으며 도전안정성 측면에서도 S-3 재료가 상대적으로 유리하였다. 매입형 전극체를 제조하여 절연파괴거동을 연구한 결과 계면접착성과의 직접적인 상관관계는 크지 않음을 알 수 있었다.

  • PDF

Measurement Method of Complex Dynamic Viscoelastic Material Properties (점탄성 재료의 복소수 동특성 측정방법)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.489-495
    • /
    • 2009
  • A novel technique to measuret of viscoelastic properties of polymers is proposed to investigate complex Poisson's ratio as a function of frequency. The forced vibration responses for the samples under the normal and the shear deformation are to be measured with varying load masses. The measured data were used to obtain the viscoelastic properties of the material based on an accurate 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Comprehensive measurements of viscoelastic properties of two slightly varied silicone RTV rubber ($Silastic^{(R)}$ S2) compositions were performed. Standard composition (90% PDMS polymer + 10% catalyst) and modified composition (92.5% polymer + 7.5% catalyst) were tested in temperature range from $30^{\circ}C$ to $70^{\circ}C$. Shear modulus, modulus of elasticity, loss factor, and both the real and the imaginary parts of the Poisson's ratio were determined for frequencies from 50 to 400Hz in the linear deformation regime (at relative deformations $10^{-4}{\sim}10^{-3}$).

All-Solid-State Ion-Selective Electrodes With Organic Solvents Soluble Conducting Polymer for Chemical Sensor (화학센서를 위한 유기 용해성이 좋은 도전성 고분자가 포함된 전체 고체상태 이온 선택성 전극에 대한 연구)

  • Kim, Joong-Il;Park, Jong-Ho;Jang, Won;Heo, Min;Na, Young-Ho;Shin, Jae-Ho;Kim, Do-Young;Um, Hwan-Sub;Lee, Sang-Woo;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.258-263
    • /
    • 2013
  • New conducting polymers containing heterocyclic ring with carbazole, EDOT and benzobisthiazole were synthesized and characterized by organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industeial fields owing to its wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room temperature vulcanizing (RTV)-type silicone rubber(SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based (ISMs)(2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted its application. Herein we demonstrate a new method to reduce membrane resistance via addition of new conducting polymer into the SR-based ISMs.