• Title/Summary/Keyword: RTK-GNSS

Search Result 93, Processing Time 0.021 seconds

Development of GNSS-only On The Move-RTK Technique for Highly Maneuvering Ground Vehicles

  • Jeon, Jong-Hwa;Yoo, Sang-Hoon;Choi, Jeung-Won;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.235-243
    • /
    • 2018
  • Conventional Real Time Kinematics (RTK) collect measurements in stationary state for several minutes to resolve the integer ambiguity in the carrier phase measurement or resolve the integer ambiguity on the move assuming low maneuvering movement. In this paper, an On The Move-RTK (OTM-RTK) technique that resolves the integer ambiguity on the move for fast and precise positioning of ground vehicles such as high maneuvering vehicles was proposed. The OTM-RTK estimates the precise amount of movement between epochs using the carrier phase measurements acquired on the move, and by using this, resolves the integer ambiguity within a short period of time by evaluating the integer ambiguity candidates for each epoch. This study analyzed the integer ambiguity resolution performance using field driving experiment data in order to verify the performance of the proposed method. The results of the experiment showed that the precise trajectory including the initial position bias can be obtained prior to resolving the integer ambiguity, and after resolving the integer ambiguity on the move, it was possible to obtain the bias-corrected precise position solution. It was confirmed that the integer ambiguity can be resolved by collecting measurements of about 10 epochs from the moving vehicle using a dual frequency receiver.

Trends of Open PPP/PPP-RTK Correction Services (Open PPP/PPP-RTK 보정정보 서비스 동향)

  • Cheolsoon Lim;Yongrae Jo;Yebin Lee;Yunho Cha;Byungwoon Park;Dookyung Park;Seungho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.418-426
    • /
    • 2022
  • Unlike OSR(observation space representation), the SSR(state space representation) augmentation system is suitable for a one-way broadcasting service because it provides the same corrections to all users in the service area. Due to this advantage, several GNSS(global navigation system) systems such as Galileo, BDS(beidou navigation satellite system), QZSS(quasi zenith satellite system) are establishing PPP (precise point positioning)/PPP-RTK precision positioning services based on SSR messages. Therefore, in this paper, we try to understand the trends of satellite-based PPP/PPP-RTK correction services by analyzing the system configurations, characteristics, and precise positioning performance of satellite-based SSR correction broadcasting services.

Development of GNSS Field Survey System for Effective Creation of Survey Result and Enhancement of User Convenience (효과적인 측량 성과물 작성 및 사용자 편의성 강화를 위한 GNSS 현장 측량시스템 개발)

  • Park, Joon Kyu;Kim, Min Gyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 2017
  • Korea has established an advanced infrastructure for real-time precise positioning such as CORS, virtual reference station service and perform continuous upgrading. However, in order to utilize the national infrastructure, it is necessary to process the acquired spatial information and take many steps to derive the final product. In addition, this process is highly dependent on foreign software. In this study, GNSS field survey system was developed and evaluation of its usability was performed. Real-time GNSS field survey system was developed and the system improves user̓s convenience and usability. The system was able to conduct survey effectively and produce the results. In addition, we compare the existing software with the survey performance to show the availability of the real-time GNSS surveying system. The system developed through the research can perform all the functions from real-time survey to the production of the outputs. It can create economical added value of the foreign software as a whole and simplify the work required for post-survey performance.

Long Baseline GPS RTK with Estimating Tropospheric Delays

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • The real-time kinematic (RTK) is one of precise positioning methods using Global Positioning System (GPS) data. In the long baseline GPS RTK, the ionospheric and tropospheric delays are critical factors for the positioning accuracy. In this paper we present RTK algorithms for long baselines more than 100 km with estimating tropospheric delays. The state vector is estimated by the extended Kalman filter. We show the experimental results of GPS RTK for various baselines (162.10, 393.37, 582.29, and 1283.57 km) by using the Korea Astronomy and Space Science Institute GPS data and one International GNSS Service (IGS) reference station located in Japan. As a result, we present that long baseline GPS RTK can provide the accurate positioning for users less than few centimeters.

Validation on the Utilization of Small-scale Unmanned Aerial Systems(sUAS) for Topographic Volume Calculations (토공량 산정을 위한 소형무인항공시스템의 활용성 평가)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.111-126
    • /
    • 2017
  • Small-scale UAS(Fusion technique of Unmanned Aerial Vehicles platform and Sensors, 'sUAS') opens various new applications in construction fields and so becoming progressively common due to the considerable potentials in terms of accuracy, costs and abilities. The purpose of this study is that the investigation of the validation on the utilization of sUAS for earth stockpile volume calculations on sites. For this, generate 3D models(DSM) with sUAS aerial images on an cone shaped soil stockpile approximately $270m{\times}300m{\times}20m$, which located at Baegot Life Park in Siheung-si, compared stockpile volume estimates produced by sUAS image analysis, against volume estimates obtained by GNSS Network-RTK ground surveying method which selected as the criteria of earth stockpile volume. The result through comparison and examination show(demonstrate) that there was under 2% difference between the volume calculated with the GNSS Network RTK data and the sUAV data, especially sUAS imaged-based volume estimate of a stockpile can be greatly simplified, done quickly, and very cost effective over conventional terrestrial survey methods. Therefore, with consideration of various plan to assess the height of vegetation, sUAS image-based application expected very useful both volume estimate and 3D geospatial information extraction in small and medium-sized sites.

A Detection Method for Irregularity of Ionospheric delay in Network RTK Environment (네트워크 RTK 환경에서 이온층 지연 변칙현상 검출 기법)

  • Ko, Jaeyoung;Shin, Mi Young;Han, Younghoon;Cho, Deuk Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2562-2568
    • /
    • 2015
  • This paper proposes a detection method for irregularity of ionospheric delay in network RTK (Real Time Kinematic) Environment. The linearity of network RTK correction provided to user can't be assured when a characteristic of temporal-spatial of ionospheric delay is rapidly changed due to geomagnetic storm or solar flare. Therefore, incorrect ambiguity can be resolved and positioning error can be increased. A detection method for irregularity of ionospheric delay is needed to provide reliable correction. In this paper, index to detect irregularity of ionospheric delay is calculated from dispersive corrections and occurrence of irregularity is judged by comparing index and thresholds.

Design of a Fully Reconfigurable Multi-Constellation and Multi-Frequency GNSS Signal Generator

  • ByungHyun Choi;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.295-306
    • /
    • 2023
  • This paper presents a multi-frequency and multi-constellation Global Navigation Satellite System (GNSS) signal generator that simulates intermediate frequency level digital signal samples for testing GNSS receivers. GNSS signal generators are ideally suited for testing the performance of GNSS receivers and algorithms under development in the laboratory for specific user locations and environments. The proposed GNSS signal generator features a fully-reconfigurable structure with the ability to adjust signal parameters, which is beneficial to generate desired signal characteristics for multiple scenarios including multi-constellation and frequencies. Successful signal acquisition, tracking, and navigation are demonstrated on a verified Software Defined Radio (SDR) in this study. This work has implications for future studies and advances the research and development of new GNSS signals.

A Study on Utilization of NTRIP Data Delivery and Virtual RINEX available from Seoul Metro Government Network-RTK system (서울특별시 네트워크 RTK 시스템의 NTRIP 데이터 전송 몇 Virtual RINEX의 활용 방안 연구)

  • Nam, Dae-Hyun;Kim, Jin-Hwan;Gwak, In-Sun;Kwon, Jay-Hyoun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.09a
    • /
    • pp.152-155
    • /
    • 2010
  • 본 연구에서는 서울특별시 네트워크 RTK 시스템의 활용 및 Virtual RINEX 실용성 검토를 위해 수행하였다. 네트워크 RTK 시스템의 활용 다양화를 위해서는 NTRIP을 통하여 타기관의 사용자 시스템으로 실시간 전송, 시설물의 변위에 대한 GNSS로 모니터링 방법, GNSS Internet Radio Client와 Radio Modem을 이용한 RTK측위를 소개하고, Virtual RINEX 실용성 검토는 VRS RTK 측위 결과와 이동국 측위 지점에 대한 Virtual RINEX 데이터의 후처리 성과를 비교하였다. 그 결과, Virtual RINEX와 GPS 관측 성과는 거의 동일하여 향후 Virtual RINEX도 후처리 데이터로 사용할 수 있는 가능성을 확인하였고, VRS RTK 측위 성과는 Virtual RINEX 후처리 성과와 수 mm 이내 차이를 보여 산출된 성과가 거의 같음을 확인할 수 있었다.

  • PDF

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.