DOI QR코드

DOI QR Code

Validation on the Utilization of Small-scale Unmanned Aerial Systems(sUAS) for Topographic Volume Calculations

토공량 산정을 위한 소형무인항공시스템의 활용성 평가

  • Lee, Yong-Chang (Department of Urban Construction Engineering, College of Urban Sciences, Incheon National University)
  • 이용창 (인천대학교 도시과학대학 도시공학과)
  • Received : 2017.04.24
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

Small-scale UAS(Fusion technique of Unmanned Aerial Vehicles platform and Sensors, 'sUAS') opens various new applications in construction fields and so becoming progressively common due to the considerable potentials in terms of accuracy, costs and abilities. The purpose of this study is that the investigation of the validation on the utilization of sUAS for earth stockpile volume calculations on sites. For this, generate 3D models(DSM) with sUAS aerial images on an cone shaped soil stockpile approximately $270m{\times}300m{\times}20m$, which located at Baegot Life Park in Siheung-si, compared stockpile volume estimates produced by sUAS image analysis, against volume estimates obtained by GNSS Network-RTK ground surveying method which selected as the criteria of earth stockpile volume. The result through comparison and examination show(demonstrate) that there was under 2% difference between the volume calculated with the GNSS Network RTK data and the sUAV data, especially sUAS imaged-based volume estimate of a stockpile can be greatly simplified, done quickly, and very cost effective over conventional terrestrial survey methods. Therefore, with consideration of various plan to assess the height of vegetation, sUAS image-based application expected very useful both volume estimate and 3D geospatial information extraction in small and medium-sized sites.

소형 무인항공시스템(무인항공기 플랫펌과 센서의 융합기술, 'sUAS')은 정확성, 경제성 및 운용면의 무궁한 잠재성으로 여러 건설현장에서 새로운 응용이 창출되면서 활용이 점차 확산되고 있다. 본 연구의 목적은 소형 UAS에 의한 토공량 산정의 타당성을 검토하는 것이다. 이를 위해 시흥시 소재 배곧생명공원 내 위치한 대략 $270m{\times}300m{\times}20m$ 규모의 원추형 성토부를 대상으로 소형무인항공기를 활용하여 영상을 취득한 후, UAS 영상해석을 통해 산출된 토공량을 GNSS Network-RTK 지상측량에 의한 토공량과 정량적으로 비교분석하였다. 연구결과, 무인항공시스템 자료와 GNSS Network RTK 자료에 의한 토공량의 편차가 2% 이하였고 특히, 작업의 편이성, 신속성 및 경제성 면에서 소형 UAS 영상기반 토공량 산정의 효용성을 입증할 수 있었다. 따라서, 식생높이의 산정방안이 보완된다면 중 소규모 현장의 토공량 산정은 물론 3차원 지형공간정보 생성 분야에 무인항공영상의 응용이 유용할 것으로 기대된다.

Keywords

References

  1. Achour K, Benkhelif, M. 2001. A new approach to 3D reconstruction without camera calibration. Pattern Recognition 34:2467-2476. https://doi.org/10.1016/S0031-3203(00)00158-8
  2. Agisoft. 2017. PhotoScan professional user manual, Russia.
  3. Arango C, Morales CA. 2015. Comparison between multicopter UAV and total station for estimating stockpile volumes. IAPRS. volume XL-1/W4. International Conference on UAV in Geomatics, 30 Aug-02 Sep, Toronto.
  4. Bemis SP, Micklethwaite S, Turner D, James MR, Akciz S, Thiele ST, Bangash HA. 2014. Ground-based and UAV-Based photogrammetry : A multi-scale, high resolutionmapping tool for structural geology and paleoseismology. Journal of Structural Geology. 69:163-178. https://doi.org/10.1016/j.jsg.2014.10.007
  5. Bently. 2017. ContextCapture Master user manual, USA.
  6. Blue Marble Geographics. 2017. Global Mapper, USA.
  7. Brothelande E, Lenat JF, Normier A, Bacri C, Peltier A, Paris R, Kelfoun K, Merle O, Finizola A, Garaebiti E. 2015. Insights into the evolution of the Yenkahe resurgent dome (Siwi caldera, Tanna Island, Vanuatu) inferred from aerial high-resolution photogrammetry. Journal of volcanology and geothermal research. 299:78-90. https://doi.org/10.1016/j.jvolgeores.2015.04.006
  8. Carrera-Hernandez JJ, Levresse G, Lacan P, Aranda-Gomez JJ. 2016. A low cost technique for development of ultra-high resolution topography : application to a dry maar's bottom. Revista Mexicana de Ciencias Geoloicas, April.
  9. Collins, RT. 2007. CSE486 Computer Vision I (Fall'07), Introduction to Computer Vision. [http://www.cse.psu.edu/-rtc12/CSE486/]. Last accessed 1 May 2017.
  10. Cryderman C, Mah SB, Shufletoski A. 2014. Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations, GEOMATICA. 68(4):309-317. https://doi.org/10.5623/cig2014-405
  11. Draeyer B, Strecha C. 2014. How accurate are UAV surveying methods ?, Pix4D White paper, February.
  12. ESRI Inc. 2015. ArcGIS for Desktop. USA
  13. Golden software. 2017. Surfer. USA.
  14. Hirschmuller H. 2011. Semi-Global Matching Motivation, Developments and Applications, Wichmann/VDE Verlag, Belin & Offenbach, p.173-184.
  15. Jancosek M. 2012. CMPMVS, Multi-View Reconstruction Software. [http://ptak.felk.cvut.cz/sfmservice/websfm.pl?menu=cmpmvs]. Last accessed 1 May 2017.
  16. Lee YC. 2015. Assessing the positioning accuracy of high density point clouds produced from rotary wing quadrocopter unmanned aerial system based imagery. Journal of the Korean socity for geospatial information science. 23(2):39-48.
  17. Longuet-Higgins HC. 1981. A computer algorithm for reconstructing a scene from two projections. Nature. 293(10):133-135. https://doi.org/10.1038/293133a0
  18. Lowe DG. 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision.
  19. Luong QT, Faugeras. 1996. The fundamental matrix : theory, algorithms, and stability analysis, International. Joumal of Computer Vision. 17:43-75. https://doi.org/10.1007/BF00127818
  20. Mikrut S. 2016. Classical photogrammetry and UAV-selected ascepts, XXIII ISPRS congress. volume XLI-B1, 12-19 July 2016, Prague, Czech Republic.
  21. MOLEG(Ministry of Government Legislation). 2016. Enforcement decree of the aviation act, Enforcement Date 20. Jul, 2016, Presidential Decree No.27360, 19. Jul, 2016, Partial Amendment.
  22. MOLIT(Ministry of Land, Infrastructure and Transport). 2017. Drone conference, Federation of Korean Industries Head Office Building, March 10.
  23. Pix4D. 2017. PixDmapper pro user manual, Switzerland.
  24. The Sydney Institute. 2017a. Calculating Bulk Volumes Using Simpson Rule. [http://mirkostrade10.sydneyinstitute.wikispaces.net/file/view/Calculating+Bulk+Volumes+Using+Simpson+Rule+.pdf]. Last accessed 1 May 2017.
  25. The Sydney Institute. 2017b. Calculating Bulk Volumes Using Trapezoidal Rule. [http://mirkostrade10.sydneyinstitute.wikispaces.net/file/view/Calculating+Bulk+Volumes+Using+Trapezoidal.pdf]. Last accessed 1 May 2017.
  26. Rao B, Gopi AG, Maione R. 2016. The societal impact of commercial drones. Technology in Society. 45:83-90. https://doi.org/10.1016/j.techsoc.2016.02.009
  27. Siebert S, Teizer J. 2014. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle system. Automation in Construction. 41:1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  28. Trimble. 2017. Trimble Business Center, USA
  29. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. 2012. 'Structure-from-Motion' photogrammetry : A low-cost, effective tool for geoscience applications. Geomorphology. 179:300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  30. Zhang C, YAO W. 2008. The comparisons of 3D analysis between photogrammetry and computer vision. ISPRS proceedings XXXVII, Part B3b. Beijing.