Browse > Article
http://dx.doi.org/10.12673/jant.2022.26.6.418

Trends of Open PPP/PPP-RTK Correction Services  

Cheolsoon Lim (Sejong University)
Yongrae Jo (Sejong University)
Yebin Lee (Sejong University)
Yunho Cha (Sejong University)
Byungwoon Park (Sejong University)
Dookyung Park (Munhwa Broadcasting Corp.)
Seungho Lee (Munhwa Broadcasting Corp.)
Abstract
Unlike OSR(observation space representation), the SSR(state space representation) augmentation system is suitable for a one-way broadcasting service because it provides the same corrections to all users in the service area. Due to this advantage, several GNSS(global navigation system) systems such as Galileo, BDS(beidou navigation satellite system), QZSS(quasi zenith satellite system) are establishing PPP (precise point positioning)/PPP-RTK precision positioning services based on SSR messages. Therefore, in this paper, we try to understand the trends of satellite-based PPP/PPP-RTK correction services by analyzing the system configurations, characteristics, and precise positioning performance of satellite-based SSR correction broadcasting services.
Keywords
Newtork RTK; OSR; PPP; PPP-RTK; SSR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C.S. Lim, Study on homogeneous network RTK method for satellite based nationwide GNSS precision positioning service, Ph.D. dissertation, Sejong University, Seoul, Feb. 2022.
2 R. Hirokawa, I. Fernandez-Hernandez, and S. Reynolds, "PPP/PPP-RTK open formats: overview, comparison, and proposal for an interoperable message," NAVIGATION, Vol. 68, No. 4, pp. 759-778, Dec. 2021.   DOI
3 M. Miya, S. Fujita, Y. Sato, K. Ota, R. Hirokawa, and J. Takiguchi, "Centimeter level augmentation service (CLAS) in Japanese quasi-zenith satellite system, its user interface, detailed design, and Plan," in Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), Portland: OR, pp. 2864-2869, 2016.
4 E. H. Kim, J. Y. Song, Y. J. Shin, S. K. Kim, P. W. Son, S. G. Park, and S. H. Park, "Fault-free protection level equation for CLAS PPP-RTK and experimental evaluations," Sensors, Vol. 22, No. 9, pp. 3570-3582, May. 2022.   DOI
5 R. Hirokawa, K. Nakakuki, S. Fujita, Y. Sato, and A. Uehara, "The operational phase performance of centimeter-level augmentation service (CLAS)," in Proceedings of the ION 2019 Pacific PNT Meeting, Honolulu: HI, pp. 349-360, 2019.
6 Cabinet Office, Quasi-zenith satellite system performance standard (PS-QZSS-003) [Internet]. Available: https://qzss.go.jp/en/technical/download/pdf/ps-is-qzss/ps-qzss-003.pdf?t=1667355755724.
7 N. Motooka, R. Hirokawa, K. Nakakuki, S. Fujita, M. Miya, and Y. Sato, "CLASLIB: an open-source toolkit for low-cost high-precision PPP-RTK positioning," in Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami: FL, pp. 3695-3707, 2019.
8 A. El-Mowafy, and M. Deo, "Bridging real-time precise point positioning in natural hazard warning systems during outages of MADOCA corrections," in Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu: HI, pp. 514-525, 2017.
9 N. Kubo, D. Hatta, K. Kobayashi, and K. Aoki, "Improved integration method of wide-area RTK/PPP with IMU and odometer," in Proceedings of the 2020 International Technical Meeting of The Institute of Navigation, San Diego: CA, pp. 772-786, 2020.
10 K. Udompant, R. Ospina, Y. J. Kim, and N. Noguchi, " Utilization of quasi-zenith satellite system for navigation of a robot combine harvester," Agronomy, Vol. 11, No. 3, pp. 483-499, Mar. 2021.   DOI
11 T. Suzuki, N. Kubo, and T. Takasu, "Evaluation of precise point positioning using MADOCA-LEX via quasi-zenith satellite system," in Proceedings of the 2014 International Technical Meeting of The Institute of Navigation, San Diego: CA, pp. 460-470, 2014.
12 I. Fernandez-Hernandez, A. Chamorro-Moreno, S. Cancela-Diaz, J. David Calle-Calle, and P. Zoccarato, D. Blonski, T. Senni, F. Javier de Blas, C. Hernandez, J. Simon, and A. Mozo, "Galileo high accuracy service: initial definition and performance," GPS Solutions, Vol. 26, No. 3, Apr. 2021.
13 EUSPA, Galileo high accuracy service (HAS) info note [Internet]. Available: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_HAS_Info_Note.pdf
14 China Satellite Navigation Office, BeiDou navigation satellite system signal in space interface control document precise point positioning service signal PPP-B2b (version 1.0) [Internet]. Available: http://en.beidou.gov.cn/SYSTEMS/ICD/202008/P020200803538771492778.pdf
15 European Union, Galileo high accuracy service signal-in-space interface control document (HAS SIS ICD) [Internet]. Available: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_HAS_SIS_ICD_v1.0.pdf
16 GMV, MagicPPP® [Internet]. Available: https://www.gmv.com/en/products/space/magicpppr
17 Y. Liu, F. Gao, J. Li, Y. He, B. Ning, Y. Liu, S. Chen, and Y. Qiu, "Analysis and performance evaluation of BDS-3 code ranging accuracy based on raw IF data from a zero-baseline experiment," Remote Sensing, Vol. 14, No. 15, pp. 3698-3713, Aug. 2022.   DOI
18 China Satellite Navigation Office, BeiDou navigation satellite system open service performance standard (version 3.0) [Internet]. Available: http://en.beidou.gov.cn/SYSTEMS/Officialdocument/202110/P020211014595952404052.pdf
19 W. Zhang, Y. Lou, W. Song, W. Sun, X. Zou, and X. Gong "Initial assessment of BDS-3 precise point positioning service on GEO B2b signal," Advances in Space Research, Vol. 69, No. 1, pp. 690-700, Jan. 2022.   DOI