• Title/Summary/Keyword: RSM(Response Surface Method)

Search Result 451, Processing Time 0.032 seconds

The Development of Taguchi and Response Surface Method Combined Model (Taguchi-RSM 통합모델 제시)

  • Ree, Sang-Bok;Kim, Youn-Soo;Yoon, Sang-Woon
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.257-263
    • /
    • 2010
  • Taguchi defined a good quality as 'A correspondence of product characteristic's expected value to the objective value satisfying the minimum variance condition.' For his good quality, he suggested Taguchi Method which is called Robust design which is irrelevant to the effect of these noise factors. Taguchi Method which has many success examples and which is used by many manufacturing industry. But Optimal solution of Taguchi Method is one among the experiments which is not optimal area of experiment point. On the other hand, Response Surface Method (RSM) which has advantage to find optimal solution area experiments points by approximate polynomial regression. But Optimal of RSM is depended on initial point and RSM can not use many factors because of a great many experiment. In this paper, we combine the Taguchi Method and the Response Surface Method with each advantage which is called Taguchi-RSM. Taguchi-RSM has two step, first step to find first solution by Taguchi Method, second step to find optimal solution by RSM with initial point as first step solution. We give example using catapults.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method (반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

Reliability Based Design Optimization using Moving Least Squares (이동최소자승법을 이용한 신뢰성 최적설계)

  • Park, Jang-Won;Lee, Oh-Young;Im, Jong-Bin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.438-447
    • /
    • 2008
  • This study is focused on reliability based design optimization (RBDO) using moving least squares. A response surface is used to derive a limit-state equation for reliability based design optimization. Response surface method (RSM) with least square method (LSM) or Kriging will be used as a response surface. RSM is fast to make the response surface. On the other hand, RSM has disadvantage to make the response surface of nonlinear equation. Kriging can make the response surface in nonlinear equation precisely but needs considerable amount of computations. The moving least square method (MLSM) is made of both methods (RSM with LSM+Kriging). Numerical results by MLSM are compared with those by LMS in Rosenbrock function and six-hump carmel back function. The RBDO of engine duct of smart UAV is pursued in this paper. It is proved that RBDO is useful tool for aerospace structural optimal design problems.

Efficient Response Surface Modeling using Sensitivity (민감도를 이용한 효율적인 반응표면모델생성)

  • Wang, Se-Myung;Kim, Chwa-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1882-1887
    • /
    • 2003
  • The response surface method (RSM) became one of famous meta modeling techniques, however its approximation errors give designers several restrictions. Classical RSM uses the least squares method (LSM) to find the best fitting approximation models from the all given data. This paper discusses how to construct RSM efficiently and accurately using moving least squares method (MLSM) with sensitivity information. In this method, several parameters should be determined during the construction of RSM. Parametric study and optimization for these parameters are performed. Several difficulties during approximation processes are described and numerical examples are demonstrated to verify the efficiency of this method.

  • PDF

The Study for Construction of the Improved Optimization Algorithm by the Response Surface Method (반응표면법의 향상된 최적화 알고리즘 구성에 관한 연구)

  • Park, J.S.;Lee, D.J.;Im, J.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.3
    • /
    • pp.22-33
    • /
    • 2005
  • Response Surface Method (RSM) constructs approximate response surfaces using sample data from experiments or simulations and finds optimum levels of process variables within the fitted response surfaces of the interest region. It will be necessary to get the most suitable response surface for the accuracy of the optimization. The application of RSM plan experimental designs. The RSM is used in the sequential optimization process. The first goal of this study is to improve the plan of central composite designs of experiments with various locations of axial points. The second is to increase the optimal efficiency applying a modified method to update interest regions.

  • PDF

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Decomposable polynomial response surface method and its adaptive order revision around most probable point

  • Zhang, Wentong;Xiao, Yiqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.675-685
    • /
    • 2020
  • As the classical response surface method (RSM), the polynomial RSM is so easy-to-apply that it is widely used in reliability analysis. However, the trade-off of accuracy and efficiency is still a challenge and the "curse of dimension" usually confines RSM to low dimension systems. In this paper, based on the univariate decomposition, the polynomial RSM is executed in a new mode, called as DPRSM. The general form of DPRSM is given and its implementation is designed referring to the classical RSM firstly. Then, in order to balance the accuracy and efficiency of DPRSM, its adaptive order revision around the most probable point (MPP) is proposed by introducing the univariate polynomial order analysis, noted as RDPRSM, which can analyze the exact nonlinearity of the limit state surface in the region around MPP. For testing the proposed techniques, several numerical examples are studied in detail, and the results indicate that DPRSM with low order can obtain similar results to the classical RSM, DPRSM with high order can obtain more precision with a large efficiency loss; RDPRSM can perform a good balance between accuracy and efficiency and preserve the good robustness property meanwhile, especially for those problems with high nonlinearity and complex problems; the proposed methods can also give a good performance in the high-dimensional cases.

Structural Optimization for Small Scale Vertical-Axis Wind Turbine Blade using Response Surface Method (반응표면법을 이용한 소형 수직축 풍력터빈 블레이드의 구조 최적화)

  • Choi, Chan-Woong;Jin, Ji-Won;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.22-27
    • /
    • 2013
  • The purpose of this paper is to perform the structural design of the small scale vertical-axis wind turbine (VAWT) blade using a response surface method(RSM). First, the four design factors that have a strong influence on the structural response of blade were selected. Analysis conditions were calculated by using the central composite design(CCD), which is a typical design of experiment for the response surface method(RSM). Also, the significance of the central composite design(CCD) was verified using analysis of variance(ANOVA). The finite element analysis was performed for the selected analytical conditions for the application of response surface method(RSM). Finally, a optimization problem was solved with a objective function of blade weight and a constraint of allowable stress to achieve a optimal structural design of blade.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.