• Title/Summary/Keyword: RSA(response spectrum analysis)

Search Result 14, Processing Time 0.024 seconds

Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model (단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가)

  • Lee, Eun-Ho;Kwak, Si-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • In this paper, for a seismic analysis of an offshore subsea manifold, Response Spectrum Analysis(RSA) and Time History Analysis(THA) were conducted under a various analysis conditions. Response spectrum and seismic design procedure have followed ISO19901-2 code. In case of THA, The response spectrum were converted into artificial earthquake history and both of Explicit and Implicit solvers were used to examine the characteristics of seismic analysis. For the verification, Various seismic analysis methods were applied on a single degree of freedom beam model and a simplified model of the actual manifold. The difference between the results of RSA and THA on the simplified manyfold model evaluated for the analysis of the actual manifold. Because THA is impossible in case of real complex structure such as a manifold, Safety of the actual manifold structure was accessed by using the RSA and the difference between the results of RSA and THA from the simplified model.

Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames (내진설계에서 사용한 해석방법이 철골 특수모멘트골조의 붕괴위험도에 미치는 영향 평가)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.243-251
    • /
    • 2020
  • In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELF-SMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.

A Study on the Error Characteristics in Response Spectrum Analysis (응답스펙트럼해석의 오차특성에 관한 연구)

  • 최형철;배익주;강병도;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.35-42
    • /
    • 1998
  • Response spectrum analysis method(RSA) rather than time history analysis method(THA) continues to e used by the profession for evaluating maximum dynamic responses of structures subjected to earthquake excitations. Nevertheless, this simple and practical method can cause significant errors in some cases with unproper modal combination method and so on. To obtain more exact responses based n RSA many studies have been carried out considering displacement of top story, base shear and overturning moment. The purpose of this study is to verify error characteristics in RSA with respect to various responses including displacement shear force and overturning moment of each story. It's shown that RSA appears to yield underestimated responses when compared to THA calculations. Also, errors involved in RSA computations grow with an increase in total number of stories.

  • PDF

Response Spectrum Analysis of Floor Structure Subjected to Group Dynamic Loads (복수의 동적하중을 받는 바닥판 구조물의 응답스펙트럼 해석)

  • Kim, Tae-Ho;Han, Duck-Jeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In general, the response spectrum analysis(RSA) method is wifely used for seismic analysis of building structures, and the time history analysis(THA) is applied for computation of structural vibration caused by equipments, machines and moving loads, etc. However, compared with the RSA method, the THA method is very complex, difficult and time consuming. In this study, the maximum responses for the vertical vibration are calculated conveniently by the RSA method. At first, the process for the RSA in excitation is proposed, and the maximum modal responses are combined by CQC and SRSS methods. Also, the responses obtained by the two modal combination methods are compared to the responses by the THA. And the correlation coefficients for human activities is proposed, and the RSA responses obtained by used to the correlation coefficients are calculated. Finally, results of the proposed method are compared with those of the time history analysis and correlation coefficients should be considered for the RSA of floor structure subjected to group dynamic loads.

  • PDF

Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake

  • Zhang, Jun-Feng;Wang, Yuan-Hao;Li, Jie;Zhao, Lin
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.405-415
    • /
    • 2021
  • Following the dynamic property analysis and elaboration, linear response spectrum analysis (RSA) and response history analysis (RHA) were conducted on a representative hyperbolic cooling towers (HCT) in present study. The seismic responses in tower shell were illustrated in detail, including the internal force amplitude, modal contribution, influence from damping ratio, comparison of results got from RSA and RHA and especially the latitude distributions of internal forces. The results show that the eigenmodes could be classified in a new method into four types according to their mode shapes and only the lateral bending modes and vertical stretching modes are meaningful for horizontal and vertical earthquake correspondingly. The bending modes and seismic deformation display the same feature which is global lateral bending accompanied by minute circular flow displacement of section. This feature also decides the latitude distributions of internal forces as sine or cosine. Moreover, the following method is also proposed for approximate estimation of internal force amplitudes without time-consuming response history analysis: getting the response spectrums of the selected ground accelerations and then comparing values of response spectrums at the natural period of first lateral bending mode because it is always prime dominant for horizontal seismic responses.

Torsional effects in symmetrical steel buckling restrained braced frames: evaluation of seismic design provisions

  • Roy, Jonathan;Tremblay, Robert;Leger, Pierre
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.423-442
    • /
    • 2015
  • The effects of accidental eccentricity on the seismic response of four-storey steel buildings laterally stabilized by buckling restrained braced frames are studied. The structures have a square, symmetrical footprint, without inherent eccentricity between the center of lateral resistance (CR) and the center of mass (CM). The position of the bracing bents in the buildings was varied to obtain three different levels of torsional sensitivity: low, intermediate and high. The structures were designed in accordance with the seismic design provisions of the 2010 National Building Code of Canada (NBCC). Three different analysis methods were used to account for accidental eccentricity in design: (1) Equivalent Static Procedure with static in-plane torsional moments assuming a mass eccentricity of 10% of the building dimension (ESP); (2) Response Spectrum Analysis with static torsional moments based on 10% of the building dimension (RSA-10); and (3) Response Spectrum Analysis with the CM being displaced by 5% of the building dimension (RSA-5). Time history analyses were performed under a set of eleven two-component historical records. The analyses showed that the ESP and RSA-10 methods can give appropriate results for all three levels of torsional sensitivity. When using the RSA-5 method, adequate performance was also achieved for the low and intermediate torsional sensitivity cases, but the method led to excessive displacements (5-10% storey drifts), near collapse state, for the highly torsionally sensitive structures. These results support the current provisions of NBCC 2010.

Structural Vibration Characteristics of a MW-Class Wind Turbine Tower Considering Earthquake Base Excitation (지진기반 가진효과를 고려한MW 급 풍력발전기 타워의 구조진동 특성연구)

  • Kim, Dong-Man;Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.616-620
    • /
    • 2009
  • Modern wind turbines have been mainly erected in region where earthquake are rare or normally weak, especially Korea was thought as safety zone from earthquake. But recently, the earthquake occurs more and more frequently. So, the wind turbine design is required the structural and functional stability under the earthquake. The earthquake can influence normal operation, even if a weak earthquake. There are two ways to review the design under earthquake using Computer Applied Engineering (CAE). One is the Response Spectrum Analysis (RSA) the other is Time History Analysis (THA). In this research, dynamic response on time is obtained under the earthquake by taking into account ground accelerogram consistent with the relevant standards applied to the turbine foundation.

  • PDF

The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements (설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰)

  • Kim, Do-Kyoun;Jang, Han-Teak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.445-453
    • /
    • 2013
  • This paper was calculated the earthquake load using ELFP(Equivalent Lateral Force Procedure) and RSA(Response Spectrum Analysis) for PSC Box Girder representative bridges by the Phase of KTX designed by ELFP and verified the difference of these analyses. It have been modeled 3 dimensional FE model of 5 bridges using a commercial FEM program for the comparison of these analyses using a commercial FEM program and were compared the earthquake load. It has been to confirm the increase of the difference ELFP of RSA calculated to seismic ground acceleration according to the ground condition and natural period. It is mean that the necessity of seismic reinforcement due to the application of a larger of earthquake load than designed earthquake load form the seismic performance evaluation result according to the difference of calculated earthquake loads.

Scaling Method of Earthquake Records for the Seismic Analysis of Tall Buildings (초고층 구조물의 지진해석을 위한 지진기록의 조정방법)

  • Kim, Tae-Ho;Park, Ji-Hyeong;Kim, Ook-Jong;Lee, Do-Bum;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.11-21
    • /
    • 2008
  • In recent years, time history analysis has been the method generally used for the seismic analysis of tall buildings with damping devices. When T is the natural period of the first vibration mode of the structure, the sum of the spectral acceleration of the earthquake ground motion is usually adjusted to that of the design response spectrum in the period ranging from 0.2T to 1.5T to meet the requirements of design code. However, when the ground motion is scaled according to the design code, the differences in the responses obtained by response spectrum analysis (RSA) and time history analysis (THA) of the structures increase as the natural period of the structure becomes longer. When time history analysis is performed by using ground accelerations that are scaled according to the design code, base shear is similar to that obtained from RSA, but other responses, such as displacements, drifts and member forces, are underestimated compared to RSA. If these results are adjusted by multiplying with the scale-up factor, the scaled responses become much smaller. Therefore, a scaling method of ground motions corresponding with the design code is proposed in this study, as a way of assisting structural engineers in generating artificial ground motions.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.