• Title/Summary/Keyword: RS decoder

Search Result 75, Processing Time 0.029 seconds

A Design of RS Decoder for MB-OFDM UWB (MB-OFDM UWB 를 위한 RS 복호기 설계)

  • Choi, Sung-Woo;Shin, Cheol-Ho;Choi, Sang-Sung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.131-136
    • /
    • 2005
  • UWB is the most spotlighted wireless technology that transmits data at very high rates using low power over a wide spectrum of frequency band. UWB technology makes it possible to transmit data at rate over 100Mbps within 10 meters. To preserve important header information, MB-OFDM UWB adopts Reed-Solomon(23,17) code. In receiver, RS decoder needs high speed and low latency using efficient hardware. In this paper, we suggest the architecture of RS decoder for MB-OFDM UWB. We adopts Modified-Euclidean algorithm for key equation solver block which is most complex in area. We suggest pipelined processing cell for this block and show the detailed architecture of syndrome, Chien search and Forney algorithm block. At last, we show the hardware implementation results of RS decoder for ASIC implementation.

  • PDF

Design of Reed Solomon Decoder for Optical Disks (광학식 디스크를 위한 Reed Solomon 복호기 설계)

  • 김창훈;박성모
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.262-265
    • /
    • 2000
  • This paper describes design of a (32, 28) Reed Solomon decoder for optical compact disk provides double error detecting and correcting capability. The most complex circuit in the RS decoder is part for solving the error location numbers from error location polynomial, and the circuit has great influence on overall decoder complexity. We use RAM based architecture with Euclid algorithm, Chien search algorithm and Forney algorithm. We have developed VHDL model and Performed logic synthesis using the SYNOPSYS CAD tool. Then, the RS decoder has been implemented with FPGA. The total umber of gate is about 11,000 gates and it operates at 20MHz.

  • PDF

A Reed-Solomon Decoder with an Efficient Euclid Cell For DVD Application (효율적인 유클리드 셀을 이용한 DVD용 Reed-Solomon Decoder의 설계)

  • 이동훈;김종태
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.285-288
    • /
    • 2000
  • In this paper, we propose a Reed-Solomon decoder for the DVD Reed-Solomon(RS) product code based on new efficient euclid cell architecture suitable for Modified Euclid Algorithm. We synthesized the RS decoder using Hyundai 0.65um CMOS standard cell library and compared the performance of the decoder with one of the conventional architectures. The result shows that the proposed euclid cell use about 32% less symbol time.

  • PDF

Architecture of RS decoder for MB-OFDM UWB

  • Choi, Sung-Woo;Choi, Sang-Sung;Lee, Han-Ho
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.195-198
    • /
    • 2005
  • UWB is the most spotlighted wireless technology that transmits data at very high rates using low power over a wide spectrum of frequency band. UWB technology makes it possible to transmit data at rate over 100Mbps within 10 meters. To preserve important header information, MBOFDM UWB adopts Reed-Solomon(23,17) code. In receiver, RS decoder needs high speed and low latency using efficient hardware. In this paper, we suggest the architecture of RS decoder for MBOFDM UWB. We adopts Modified-Euclidean algorithm for key equation solver block which is most complex in area. We suggest pipelined processing cell for this block and show the detailed architecture of syndrome, Chien search and Forney algorithm block. At last, we show the hardware implementation results of RS decoder for ASIC implementation.

  • PDF

Design of a RS(23,17) Reed-Solomon Decoder (RS(23,17) 리드-솔로몬 복호기 설계)

  • Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2286-2292
    • /
    • 2008
  • In this paper, we design a RS(23,17) decoder for MB-OFDM(Multiband-Orthogonal Frequency Division Multiplexing) system, in which Modified Euclidean(ME) algorithm is adopted for key equation solver block. The proposed decoder has been optimized for MB-OFDM system so that it has less latency and hardware complexity. Additionally, we have implemented the proposed decoder using Verilog HDL and synthesized with Samsung 65nm library. From synthesis results, it can operate at clock frequency of 250MHz, and gate count is 20,710.

New Time-Domain Decoder for Correcting both Errors and Erasures of Reed-Solomon Codes

  • Lu, Erl-Huei;Chen, Tso-Cho;Shih, Chih-Wen
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.612-621
    • /
    • 2016
  • A new time-domain decoder for Reed-Solomon (RS) codes is proposed. Because this decoder can correct both errors and erasures without computing the erasure locator, errata locator, or errata evaluator polynomials, the computational complexity can be substantially reduced. Herein, to demonstrate this benefit, complexity comparisons between the proposed decoder and the Truong-Jeng-Hung and Lin-Costello decoders are presented. These comparisons show that the proposed decoder consistently has lower computational requirements when correcting all combinations of ${\nu}$ errors and ${\mu}$ erasures than both of the related decoders under the condition of $2{\nu}+{\mu}{\leq}d_{\min}-1$, where $d_{min}$ denotes the minimum distance of the RS code. Finally, the (255, 223) and (63, 39) RS codes are used as examples for complexity comparisons under the upper bounded condition of min $2{\nu}+{\mu}=d_{\min}-1$. To decode the two RS codes, the new decoder can save about 40% additions and multiplications when min ${\mu}=d_{min}-1$ as compared with the two related decoders. Furthermore, it can also save 50% of the required inverses for min $0{\leq}{\mu}{\leq}d_{\min}-1$.

An Optimized Design of RS(23,17) Decoder for UWB (UWB 시스템을 위한 RS(23,17) 복호기 최적 설계)

  • Kang, Sung-Jin;Kim, Han-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.821-828
    • /
    • 2008
  • In this paper, we present an optimized design of RS(23,17) decoder for UWB, which uses the pipeline structured-modified Euclidean(PS-ME) algorithm. Firstly, the modified processing element(PE) block is presented in order to get rid of degree comparison circuits, registers and MUX at the final PE stage. Also, a degree computationless decoding algorithm is proposed, so that the hardware complexity of the decoder can be reduced and high-speed decoder can be implemented. Additionally, we optimize Chien search algorithm, Forney algorithm, and FIFO size for UWB specification. Using Verilog HDL, the proposed decoder is implemented and synthesized with Samsung 65nm library. From synthesis results, it can operate at clock frequency of 250MHz, and gate count is 17,628.

Error Control Scheme for High-Speed DVD Systems

  • Lee, Joon-Yun;Lee, Jae-Jin;Park, Tae-Geun
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.103-110
    • /
    • 2005
  • We present a powerful error control decoder which can be used in all of the commercial DVD systems. The decoder exploits the error information from the modulation decoder in order to increase the error correcting capability. We can identify that the modulation decoder in DVD system can detect errors more than $60\%$ of total errors when burst errors are occurred. In results, fur a decoded block, error correcting capability of the proposed scheme is improved up to $25\%$ more than that of the original error control decoder. In addition, the more the burst error length is increased, the better the decoder performance. Also, a pipeline-balanced RSPC decoder with a low hardware complexity is designed to maximize the throughput. The maximum throughput of the RSPC decoder is 740Mbps@100MHz and the number of gate counts is 20.3K for RS (182, 172, 11) decoder and 30.7K for RS (208, 192, 17) decoder, respectively

  • PDF

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.187-187
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF($2^8$) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.29-38
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF(2$^{8}$ ) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.