• 제목/요약/키워드: ROS scavenger

검색결과 125건 처리시간 0.031초

The Protective Effects of Insulin on Hydrogen Peroxide-Induced Oxidative Stress in C6 Glial Cells

  • Mahesh, Ramalingam;Kim, Sung-Jin
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.395-402
    • /
    • 2009
  • Insulin appears to play a role in brain physiology, and disturbances of cerebral insulin signalling and glucose homeostasis are implicated in brain pathology. The objective of the present study was to investigate the protective effects of insulin under conditions of oxidative stress induced by hydrogen peroxide ($H_2O_2$) in C6 glial cells. Insulin at concentration of $10^{-7}$ M could prevent 12 h $H_2O_2$-induced cell death. The formation of reactive oxygen species (ROS), nitric oxide (NO) and 2-thiobarbituric acid-reactive substances (TBARS) were significantly scavenged by insulin pre-treatment in C6 glial cells after $H_2O_2$-induced oxidative stress. Insulin significantly stimulated the phosphorylation of Akt in the cells and the activation of Akt was maintained in response to insulin under $H_2O_2$ incubation for 12 h. In conclusion, these results provide evidence that insulin acts as a free radical scavenger and stimulating Akt activity. These data suggest that insulin may be effective in degenerative diseases with oxidative stress.

Radish phospholipid hydroperoxide glutathione peroxidase provides protection against hydroperoxide-mediated injury in mouse 3T3 fibroblasts

  • Li, Tian;Liu, Guan-Lan;Duan, Ming-Xing;Liu, Jin-Yuan
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.648-654
    • /
    • 2009
  • Overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx) genes has been reported to play an important role in protecting host cells from oxidative injury in several model systems. A radish phospholipid hydroperoxide glutathione peroxidase (RsPHGPx) known to have high catalytic activity was applied to mouse 3T3 fibroblasts to determine the protective effects of PHGPx against oxidative injury triggered by hydroperoxides such as hydrogen peroxide ($H_2O_2$), tert-butyl hydroperoxide (t-BHP) and phosphatidylcholine hydroperoxide (PCOOH). We observed that preincubation of cells with RsPHGPx significantly increased cell viability, reduced levels of malondialdehyde (MDA), inhibited generation of reactive oxygen species (ROS), and maintained natural cell shapes after treatment with $H_2O_2$, t-BHP or PCOOH, indicating that the exogenous RsPHGPx can act as an effective hydroperoxide-scavenger and may also protect target cells from oxidative damage. These results suggest the possibility for use of RsPHGPx as a therapeutic protectant.

A Simple and Sensitive High Performance Liquid Chromatography-Electrospray Ionization/Mass Spectrometry Method for the Quantification of Ethyl Pyruvate in Rat Plasma

  • Kim, Hyun-Ji;Kim, Seung-Woo;Lee, Ja-Kyeong;Yoon, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1221-1227
    • /
    • 2011
  • Ethyl pyruvate (EP) is known as a scavenger of reactive oxygen species (ROS) in the body through its role in the donation of diketone groups to metals to form an EP-metal complex. In order to develop a method for the quantification of EP in biological media, a sensitive and specific, high-performance liquid chromatographyelectrospray ionization-mass spectrometry (HPLC-ESI/MS) method is used to determine the EP-alkali metal ion binding species. The analyte was separated on a ZORBOX SB-C8 ($3.5{\mu}m$, $30mm{\times}2.1mm$ I.D.) column and analyzed in selected ion monitoring (SIM) mode with a positive ESI interface using the m/z 255 $[2M + Na]^+$ ion. The method was validated over the concentration range of $0.5-60.0\;{\mu}g$/mL under 1/9 (v/v) of acetonitrile/methanol solvent system with flow rate 0.05 mL/min. The limit of quantification (LOQ) was $0.5{\mu}g$/mL.

Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

  • Kim, Nam-Hoon;Park, Hyo Jung;Oh, Mi-Kyung;Kim, In-Sook
    • BMB Reports
    • /
    • 제46권1호
    • /
    • pp.59-64
    • /
    • 2013
  • Signal transducer and activator of transcription 3 (STAT3) and telomerase are considered attractive targets for anticancer therapy. The in vitro anticancer activity of the gold(I) compound auranofin was investigated using MDA-MB 231 human breast cancer cells, in which STAT3 is constitutively active. In cell culture, auranofin inhibited growth in a dose-dependent manner, and N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), markedly blocked the effect of auranofin. Incorporation of 5-bromo-2'-deoxyuridine into DNA and anchorage-independent cell growth on soft agar were decreased by auranofin treatment. STAT3 phosphorylation and telomerase activity were also attenuated in cells exposed to auranofin, but NAC pretreatment restored STAT3 phosphorylation and telomerase activity in these cells. These findings indicate that auranofin exerts in vitro antitumor effects in MDA-MB 231 cells and its activity involves inhibition of STAT3 and telomerase. Thus, auranofin shows potential as a novel anticancer drug that targets STAT3 and telomerase.

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A

  • Kwak, Geun-Hee;Choi, Seung-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.622-628
    • /
    • 2010
  • Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.

Paraquat 유독성에 대한 Flavonoid류의 독성경감효과 (Scavenging Effects of Flavonoids on Paraquat Induced Toxicity)

  • 최병기;조내규
    • Environmental Analysis Health and Toxicology
    • /
    • 제10권1_2호
    • /
    • pp.47-54
    • /
    • 1995
  • To investigate and evaluated the scavenging and antioxidative effects of various flavonoids on paraquat induced toxicity, in vivo and vitro tests of eight flavonoids (catechin, epocatechin, flavone, chrysin, apigenin, quercetin, morin and biochanin A) were carried out. The generation of reactive oxygen substances(ROS) in PMS-NADH system $H_2O_2$ induced hemolysis and lipidperoxidation to blood, NADPH dependent lipidperoxidation to liver and lung microsome by paraquat were studied.The results are summerized as follows; 1) In the concentration ranges from 3.3 to 9.8$\mu$M of catechin,epicatechin, quercetin and biochanin A removed the 50% of DPPH radical scavenging effects. 2) In the concentration ranges from 0.60 to 1.86 mM of catechin, epicatechin, quercetin and biochanin A showed the inhibitory and antioxidative activity on superoxide anion which gernerated in PMA-NADH system. 3) In the concentration ranges from 0.12 to 0.49mM of catechin, epicatechin, quercetin and biochanin A showed the inhibitory and antioxidative activity on H202 which generated in PMA-NADH system. 4) In the concentration ranges from 0.6 x10$^{-5}$ to 6.3 x 10$^{-5}$mM of catechin, epicatechin, flavone, chrysin, quercetin and morin showed the inhibitory and antioxidative activity on $H_2O_2$ induced hemolysis to blood 5) All flavonoids tested exhibited inhibitory and antioxidative effects on paraquat induced liver and tung microsomal lipidperoxidation. Therefore, all flavonoids evaluated showed the useful compounds for scavenger and antioxidant on paraquat induced toxicity.

  • PDF

The influence and role of melatonin on in vitro oocyte maturation and embryonic development in pig and cattle

  • Lin, Tao;Lee, Jae Eun;Kang, Jeong Won;Kim, So Yeon;Jin, Dong Il
    • 농업과학연구
    • /
    • 제44권3호
    • /
    • pp.309-317
    • /
    • 2017
  • Melatonin (N-acetyl-5-methoxytryptamine) is an indole synthesized from tryptophan by the pineal gland in animal. The major function of melatonin is to modulate circadian and circannual rhythms in photoperiodic mammals. Importantly, however, melatonin is also a free radical scavenger, anti-oxidant, and anti-apoptotic agent. Recently, the beneficial effects of melatonin on oocyte maturation and embryonic development in vitro have been reported in many species such as pig, cattle, sheep, mouse, and human. In this review, we will discuss recent studies about the role of melatonin in the production of porcine and bovine oocytes and embryos in vitro in order to provide useful information of melatonin in oocyte maturation and embryo culture in vitro.

Sodium Salicylate Activates p38MAPK Though a Specific-Sensing Mechanism, Distinct from Pathways Used by Oxidative Stress, Heat Shock, and Hyperosmotic Stress

  • Kim, Jung-Mo;Oh, Su-Young;Kim, Min-Young;Seo, Myoung-Suk;Kang, Chi-Duk;Park, Hye-Gyeong;Kang, Ho-Sung
    • 대한의생명과학회지
    • /
    • 제9권4호
    • /
    • pp.241-248
    • /
    • 2003
  • Sodium salicylate, a plant stress hormone that plays an important role(s) in defenses against pathogenic microbial and herbivore attack, has been shown to induce a variety of cell responses such as anti-inflammation, cell cycle arrest and apoptosis in animal cells. p38MAPK plays a critical role(s) in the cell regulation by sodium salicylate. However, the signal pathway for sodium salicylate-induced p38MAPK activation is yet unclear. In this study, we show that although sodium salicylate enhances reactive oxygen species (ROS) production, N-acetyl-L-cysteine, a general ROS scavenger, did not prevent sodium salicylate-induced p38MAPK, indicating ROS-independent activation of p38MAPK by sodium salicylate. Sodium salicylate-activated p38MAPK appeared to be very rapidly down-regulated 2 min after removal of sodium salicylate. Interestingly, sodium salicylate-pretreated cells remained fully responsive to re-induction of p38MAPK activity by a second sodium salicylate stimulation or by other stresses, $H_2O$$_2$ and methyl jasmonate (MeJA), thereby indicating that sodium salicylate does not exhibit both homologous and heterologous desensitization. In contrast, pre-exposure to MeJA, $H_2O$$_2$, heat shock, or hyperosmotic stress reduced the responsiveness to subsequent homologous stimulation. Sodium salicylate was able to activate p38MAPK in cells desensitized by other heterologous p38MAPK activators. These results indicate that there is a sensing mechanism highly specific to sodium salicylate for activation of p38MAPK, distinct trom pathways used by other stressors such as MeJA, $H_2O$$_2$ heat shock, and hyperosmotic stress.

  • PDF

Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

  • Kim, Jae-Hwan;Park, Eun-Young;Ha, Ho-Kyung;Jo, Chan-Mi;Lee, Won-Jae;Lee, Sung Sill;Kim, Jin Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.288-298
    • /
    • 2016
  • Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than $50{\mu}M$. Nanoparticles prepared from ${\beta}$-lactoglobulin (${\beta}$-lg) were successfully developed. The ${\beta}$-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. Fluorescein isothiocynate-conjugated ${\beta}$-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored $H_2O_2$-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells

  • Song, Jia-Le;Choi, Jung-Ho;Seo, Jae-Hoon;Kil, Jeung-Ha;Park, Kun-Young
    • Nutrition Research and Practice
    • /
    • 제8권2호
    • /
    • pp.138-145
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide ($H_2O_2$)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS: 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical ($^{\bullet}OH$), and $H_2O_2$ scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against $H_2O_2$-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS: The ability of FSeS to scavenge DPPH, $^{\bullet}OH$ and $H_2O_2$ was greater than that of FSS and AHSS. FSeS also significantly inhibited $H_2O_2$-induced ($500{\mu}M$) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with $100{\mu}g/mL$ of FSeS and FSS to prevent $H_2O_2$-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce $H_2O_2$-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed $H_2O_2$-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS: These results from the present study suggest that FSeS is an effective radical scavenger and protects against $H_2O_2$-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity.