Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.9.622

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A  

Kwak, Geun-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Choi, Seung-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Kim, Hwa-Young (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
Publication Information
BMB Reports / v.43, no.9, 2010 , pp. 622-628 More about this Journal
Abstract
Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.
Keywords
Antioxidant; Dimethyl sulfoxide; MsrA; ROS scavenger; Selective inhibitor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Oien, D. and Moskovitz, J. (2007) Protein-carbonyl accumulation in the non-replicative senescence of the methionine sulfoxide reductase A (msrA) knockout yeast strain. Amino Acids 32, 603-606.   DOI   ScienceOn
2 Moskovitz, J., Bar-Noy, S., Williams, W. M., Requena, J., Berlett, B. S. and Stadtman, E. R. (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. U.S.A. 98, 12920-12925.   DOI   ScienceOn
3 Moskovitz, J. and Oien, D. B. (2010) Protein carbonyl and the methionine sulfoxide reductase system. Antioxid. Redox Signal. 12, 405-415.   DOI   ScienceOn
4 Etienne, F., Resnick, L., Sagher, D., Brot, N. and Weissbach, H. (2003) Reduction of Sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system. Biochem. Biophys. Res. Commun. 312, 1005-1010.   DOI   ScienceOn
5 Kim, H. Y. and Kim, J. R. (2008) Thioredoxin as a reducing agent for mammalian methionine sulfoxide reductases B lacking resolving cysteine. Biochem. Biophys. Res. Commun. 371, 490-494.   DOI   ScienceOn
6 Marchetti, M. A., Pizarro, G. O., Sagher, D., Deamicis, C., Brot, N., Hejtmancik, J. F., Weissbach, H. and Kantorow, M. (2005) Methionine sulfoxide reductases B1, B2, and B3 are present in the human lens and confer oxidative stress resistance to lens cells. Invest. Ophthalmol. Vis. Sci. 46, 2107-2112.   DOI   ScienceOn
7 Koc, A., Gasch, A. P., Rutherford, J. C., Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc. Natl. Acad. Sci. U.S.A. 101, 7999-8004.   DOI   ScienceOn
8 Moskovitz, J., Flescher, E., Berlett, B. S., Azare, J., Poston, J. M. and Stadtman, E. R. (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 95, 14071-14075.   DOI
9 Picot, C. R., Petropoulos, I., Perichon, M., Moreau, M., Nizard, C. and Friguet, B. (2005) Overexpression of MsrA protects WI-38 SV40 human fibroblasts against $H_2O_2$-mediated oxidative stress. Free Radic. Biol. Med. 39, 1332-1341.   DOI   ScienceOn
10 Cabreiro, F., Picot, C. R., Perichon, M., Castel, J., Friguet, B. and Petropoulos, I. (2008) Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage. J. Biol. Chem. 283, 16673-16681.   DOI   ScienceOn
11 Kwak, G. H., Kim, J. R. and Kim, H. Y. (2009) Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae. BMB Rep. 42, 113-118.   DOI   ScienceOn
12 Hansen, J. (1999) Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65, 3915-3919.
13 Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z. and Gladyshev, V. N. (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. U.S.A. 99, 4245-4250.   DOI   ScienceOn
14 Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: Characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064.   DOI   ScienceOn
15 Le, D. T., Lee, B. C., Marino, S. M., Zhang, Y., Fomenko, D. E., Kaya, A., Hacioglu, E., Kwak, G. H., Koc, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J. Biol. Chem. 284, 4354-4364.   DOI   ScienceOn
16 Delaye, L., Becerra, A., Orgel, L. and Lazcano, A. (2007) Molecular evolution of peptide methionine sulfoxide reductases (MsrA and MsrB): on the early development of a mechanism that protects against oxidative damage. J. Mol. Evol. 64, 15-32.   DOI   ScienceOn
17 Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta 1790, 1471-1477.   DOI   ScienceOn
18 Alamuri, P. and Maier, R. J. (2004) Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol. Microbiol. 53, 1397-1406.   DOI   ScienceOn
19 Kantorow, M., Hawse, J. R., Cowell, T. L., Benhamed, S., Pizarro, G. O., Reddy, V. N. and Hejtmancik, J. F. (2004) Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 101, 9654-9659.   DOI   ScienceOn
20 Salmon, A. B., Perez, V. I., Bokov, A., Jernigan, A., Kim, G., Zhao, H., Levine, R. L. and Richardson, A. (2009) Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB J. 23, 3601-3608.   DOI   ScienceOn
21 Sharov, V. S., Ferrington, D. A., Squier, T. C. and Schoneich, C. (1999) Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett. 455, 247-250.   DOI   ScienceOn
22 Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329.   DOI   ScienceOn
23 Weissbach, H., Resnick, L. and Brot, N. (2005) Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim. Biophys. Acta 1703, 203-212.   DOI   ScienceOn
24 Brot, N., Weissbach, L., Werth, J. and Weissbach, H. (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc. Natl. Acad. Sci. U.S.A. 78, 2155-2158.   DOI   ScienceOn
25 Grimaud, R., Ezraty, B., Mitchell, J. K., Lafitte, D., Briand, C., Derrick, P. J. and Barras, F. (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J. Biol. Chem. 276, 48915-48920.   DOI   ScienceOn
26 Lin, Z., Johnson, L. C., Weissbach, H., Brot, N., Lively, M. O. and Lowther, W. T. (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc. Natl. Acad. Sci. U.S.A. 104, 9597-9602.   DOI   ScienceOn
27 Moskovitz, J., Weissbach, H. and Brot, N. (1996) Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 2095-2099.   DOI
28 Kwak, G. H., Choi, S. H., Kim, J. R. and Kim, H. Y. (2009) Inhibition of methionine sulfoxide reduction by dimethyl sulfoxide. BMB Rep. 42, 580-585.   DOI   ScienceOn
29 Santos, N. C., Figueira-Coelho, J., Martins-Silva, J. and Saldanha, C. (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 65, 1035-1041.   DOI   ScienceOn
30 Lee, B. C., Le, D. T. and Gladyshev, V. N. (2008) Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J. Biol. Chem. 283, 28361-28369.   DOI   ScienceOn
31 Liu, S. X., Athar, M., Lippai, I., Waldren, C. and Hei, T. K. (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc. Natl. Acad. Sci. U.S.A. 98, 1643-1648.   DOI   ScienceOn
32 Perez-Pasten, R., Martinez-Galero, E., Garduno-Siciliano, L., Lara, I. C. and Cevallos, G. C. (2006) Effects of dimethylsulphoxide on mice arsenite-induced dysmorphogenesis in embryo culture and cytotoxicity in embryo cells. Toxicol. Lett. 161, 167-173.   DOI   ScienceOn
33 Sugimoto, K., Fujii, S., Takemasa, T. and Yamashita, K. (2000) Detection of intracellular nitric oxide using a combination of aldehyde fixatives with 4,5-diaminofluorescein diacetate. Histochem. Cell Biol. 113, 341-347.