• Title/Summary/Keyword: ROS generation

Search Result 600, Processing Time 0.021 seconds

Mori Fructus Induces Cell Death through ROS-dependent Mitochondrial Apoptotic Pathway in Human Glioma Cells

  • Jang, Sang-Won;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1322-1329
    • /
    • 2008
  • Mulberry has been reported to contain wide range of polyphenols and have chemopreventive activity. However, little has been known regarding the effect of mulberry fruits on cell viability in human glioma cells. The present study was undertaken to examine the effect of mulberry fruit (Mar; Fructus) on cell viability and to determine its underlying mechanism in human glioma cells. Cell viability and cell death were estimated by MTT assay and trypanblue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. The mitochondrial transmembrane potential was measured with $DiOC_6$(3). Bax expression and cytochrome c release were measured by Western blot analysis. Caspase activity was estimated using colorimetric kit. Mori Fructus resulted in apoptotic cell death in a dose- and time-dependent manner. Mori Fructus increased ROS generation and the Mori Fructus-induced cell death was also prevented by antioxidants, suggesting that ROS generation plays a critical role in Mari Fructus-induced cell death. Western blot analysis showed that Mori Fructus treatment caused an increase in Bax expression, which was inhibited by the antioxidant N-acetylcysteine (NAC). Mori Fructus induced depolarization of mitochondrial membrane potential and its effect was inhibited by the antioxidants NAC and catalase. Mori Fructus induced cytochrome c release, which was inhibited by NAC. Caspase activity was stimulated by Mori Fructus and caspase inhibitors prevented the Mori Fructus-induced cell death. These findings suggest that Mori Fructus results in human glioma cell death through ROS-dependent mitochondrial pathway in human glioma cells.

The Effect of Neodymium Oxide on the Generation of Reactive Oxygen Species and DNA Oxidative Damage by Intratracheal Instillation (산화네오디뮴 기도투여에 따른 폐내 활성산소종 발생 및 DNA의 산화적 손상)

  • Kim, Jong-Kyu;Kim, Soo-Jin;Kang, Min-Gu;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.336-344
    • /
    • 2014
  • Objectives: This study was performed to assay the effect of neodymium oxide on the generation of reactive oxygen species and DNA oxidative damage by intratracheal instillation. Methods: Two groups of rats were exposed to neodymium oxide($Nd_2O_3$) via intratracheal instillation with doses of 0.5 mg and 2.0 mg, respectively. At two days and at 12 weeks after exposure, the contents of neodymium oxide in the lung, liver, kidney, heart and brain, leukocyte, olive tail moment, ROS, RNS, lactate dehydrogenase, albumin, cytokine and MDA from BALF were measured. Results: Neodymium oxide contents in the liver, kidney, heart, and brain were detected at less than $1{\mu}g/g$ tissue concentration. However, in the lungs at four weeks the highest amount were detected and then found to be drastically reduced at 12 weeks. ROS and RNS in bronchoalveolar lavage increased in concentration dependently at two days, four weeks and 12 weeks after neodymium oxide instillation. However, ROS and RNS decreased with the passage of time. At two days the total number of WBC in BALF in the high concentration group was significantly increased, and at four weeks the total number of WBC were significantly increased in the low and high concentration groups(p<0.01). At two days after exposure, the LDH of the low and high concentration groups was significantly increased. At 12 weeks, only the LDH of the high concentration group was significantly increased compared to in the control group(p<0.01). As a result of Comet assay, after two days, damage to the DNA of the low and high concentration groups was observed. Conclusions: Intratracheal instillation of neodymium oxide induces the generation of ROS and DNA damage in rats.

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Selective Effects of Curcumin on CdSe/ZnS Quantum-dot-induced Phototoxicity Using UVA Irradiation in Normal Human Lymphocytes and Leukemia Cells

  • Goo, Soomin;Choi, Young Joo;Lee, Younghyun;Lee, Sunyeong;Chung, Hai Won
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • Quantum dots (QDs) have received considerable attention due to their potential role in photosensitization during photodynamic therapy. Although QDS are attractive nanomaterials due to their novel and unique physicochemical properties, concerns about their toxicity remain. We suggest a combination strategy, CdSe/ZnS QDs together with curcumin, a natural yellow pigment from turmeric, to reduce QD-induced cytotoxicity. The aim of this study was to explore a potentially effective cancer treatment: co-exposure of HL-60 cells and human normal lymphocytes to CdSe/ZnS QDs and curcumin. Cell viability, apoptosis, reactive oxygen species (ROS) generation, and DNA damage induced by QDs and/or curcumin with or without ultraviolet A (UVA) irradiation were evaluated in both HL-60 cells and normal lymphocytes. In HL-60 cells, cell death, apoptosis, ROS generation, and single/double DNA strand breaks induced by QDs were enhanced by treatment with curcumin and UVA irradiation. The protective effects of curcumin on cell viability, apoptosis, and ROS generation were observed in normal lymphocytes, but not leukemia cells. These results demonstrated that treatment with QD combined with curcumin increased cell death in HL-60 cells, which was mediated by ROS generation. However, curcumin acted as an antioxidant in cultured human normal lymphocytes.

Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ

  • Kim, Young-Ae;Kim, Mi-Young;Jung, Yi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.358-363
    • /
    • 2013
  • In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-${\delta}$ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-${\delta}$ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.

Modulation of Reactive Oxygen Species to Overcome 5-Fluorouracil Resistance

  • Chun, Kyung-Soo;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.479-489
    • /
    • 2022
  • 5-Fluorouracil (5-FU) remains to be an important chemotherapeutic drug for treating several cancers when targeted therapy is unavailable. Chemoresistance limits the clinical utility of 5-FU, and new strategies are required to overcome the resistance. Reactive oxygen species (ROS) and antioxidants are balanced differently in both normal and cancer cells. Modulating ROS can be one method of overcoming 5-FU resistance. This review summarizes selected compounds and endogenous cellular targets modulating ROS generation to overcome 5-FU resistance.

Induction of Apoptosis by Citri Pericarpium Methanol Extract through Reactive Oxygen Species Generation in U937 Human Leukemia Cells (진피 메탄올 추출물의 활성산소종 생성을 통한 인체 백혈병 세포의 apoptosis 유발)

  • Kim, Ga Hee;Lee, Moon Hee;Han, Min Ho;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1057-1063
    • /
    • 2013
  • Citri Pericarpium is one of the most commonly used traditional herbal medicines in Korea, China, and Japan. Its extracts have many properties including the treatment of indigestion and inflammatory respiratory syndromes such as bronchitis and asthma. However, the underlying molecular mechanisms of anti-cancer activity and molecular targets are not fully understood. In this work, we investigated the anti-proliferative activity of Citri Pericapium (EMCP) methanol extract on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death using U937 human leukemia cells in vitro. EMCP treatment decreased cell proliferation in a dose-dependent manner following an increase of the sub-G1 phase, the down-regulation of Bax proteins, the activation of caspases, the degradation of poly (ADP-ribose) polymerase proteins (PARP), and the induction of ROS generation. However, the quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the EMCP-induced apoptosis effects. In addition, heme oxygenase-1 expression also recovered by inhibiting the nuclear translocation of phosphorylated NF-E2-related factor 2. Taken together, our data indicate that ROS are involved as key mediators in the early molecular events in the EMCP-induced apoptotic pathway.

Antioxidant and Whitening Activity of Essential Oils (Essential Oils의 항산화 활성 및 미백작용)

  • Lim, Hye-Won;Kim, Ju-Yeon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.265-271
    • /
    • 2005
  • This study is performed to investigate the effects of citrus essential oils on melanin production in B16 melanoma cells and reactive oxygen species (ROS) generation in RBL 2H3 cells. Five kinds of citrus essential oil (bergamot, grapefruit, lemmon, mandarin, petigrain) did not have any influence on DPPH radical scavenger activity, cell growth and cytotoxicity in B16 melanoma cells. In purified tyrosinase assay, both mandarin and petigrain essential oils dose-dependently inhibited its activity, but bergamot did not. In $1{\mu}M\;{\alpha}-MSH-stimulated$ B16 melanoma cells, all of 5 citrus essential oils inhibited melanin production in $\underline{a}$ dose dependent manner. On the other hand, four kinds of citrus essential oil dose-dependently increased ROS generation in RBL 2H3 mast cells, but mandarin did not. From the above results, it is possible that citrus essential oils nay be developed to be anti-melanogenic agent on the basis of their inhibitory effect on MSH-induced melanin production. Hut we can not rule out the possibility of the induction of allergy and inflammation since citrus essential oils caused ROS generation in RBL 2H3 mast cells.

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

Reactive Oxygen Species Depletion by Silibinin Stimulates Apoptosis-Like Death in Escherichia coli

  • Lee, Bin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2129-2140
    • /
    • 2017
  • Silibinin is the major active component of silymarin, extracted from the medicinal plant Silybum marianum. Silibinin has potent antibacterial activity; however, the exact mechanism underlying its activity has not been elucidated. Here, we investigated the novel mechanism of silibinin against Escherichia coli. Time-kill kinetic assay showed that silibinin possess a bactericidal effect at minimal inhibitory concentration (MIC) and higher concentrations (2-and 4-fold MIC). At the membrane, depolarization and increased intracellular $Ca^{2+}$ levels were observed, considered as characteristics of bacterial apoptosis. Additionally, cells treated with MIC and higher concentrations showed apoptotic features like DNA fragmentation, phosphatidylserine exposure, and caspase-like protein expression. Generally, apoptotic death is closely related with ROS generation; however, silibinin did not induce ROS generation but acted as a scavenger of intracellular ROS. These results indicate that silibinin dose-dependently induces bacterial apoptosis-like death, which was affected by ROS depletion, suggesting that silibinin is a potential candidate for controlling bacteria.