Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.017

Modulation of Reactive Oxygen Species to Overcome 5-Fluorouracil Resistance  

Chun, Kyung-Soo (College of Pharmacy, Keimyung University)
Joo, Sang Hoon (Department of Pharmacy, Daegu Catholic University)
Publication Information
Biomolecules & Therapeutics / v.30, no.6, 2022 , pp. 479-489 More about this Journal
Abstract
5-Fluorouracil (5-FU) remains to be an important chemotherapeutic drug for treating several cancers when targeted therapy is unavailable. Chemoresistance limits the clinical utility of 5-FU, and new strategies are required to overcome the resistance. Reactive oxygen species (ROS) and antioxidants are balanced differently in both normal and cancer cells. Modulating ROS can be one method of overcoming 5-FU resistance. This review summarizes selected compounds and endogenous cellular targets modulating ROS generation to overcome 5-FU resistance.
Keywords
Reactive oxygen species; Cancer; Resistance; 5-Fluorouracil;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Riahi-Chebbi, I., Haoues, M., Essafi, M., Zakraoui, O., Fattouch, S., Karoui, H. and Essafi-Benkhadir, K. (2015) Quince peel polyphenolic extract blocks human colon adenocarcinoma LS174 cell growth and potentiates 5-fluorouracil efficacy. Cancer Cell Int. 16, 1.   DOI
2 Riahi-Chebbi, I., Souid, S., Othman, H., Haoues, M., Karoui, H., Morel, A., Srairi-Abid, N., Essafi, M. and Essafi-Benkhadir, K. (2019) The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep. 9, 195.   DOI
3 Sakai, K., Hattori, T., Sagawa, K., Yokoyama, M. and Takatsuki, K. (1987) Biochemical and functional characterization of MCS-2 antigen (CD13) on myeloid leukemic cells and polymorphonuclear leukocytes. Cancer Res. 47, 5572-5576.
4 Shukla, S. and Gupta, S. (2010) Apigenin: a promising molecule for cancer prevention. Pharm. Res. 27, 962-978.   DOI
5 Solis, W. A., Dalton, T. P., Dieter, M. Z., Freshwater, S., Harrer, J. M., He, L., Shertzer, H. G. and Nebert, D. W. (2002) Glutamate-cysteine ligase modifier subunit: mouse Gclm gene structure and regulation by agents that cause oxidative stress. Biochem. Pharmacol. 63, 1739-1754.   DOI
6 Umezawa, H., Aoyagi, T., Suda, H., Hamada, M. and Takeuchi, T. (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiot. 29, 97-99.   DOI
7 Dhanasekaran, D. N. and Reddy, E. P. (2008) JNK signaling in apoptosis. Oncogene 27, 6245-6251.   DOI
8 Cao, W., Li, X., Zheng, S., Zheng, W., Wong, Y. S. and Chen, T. (2014) Selenocysteine derivative overcomes TRAIL resistance in melanoma cells: evidence for ROS-dependent synergism and signaling crosstalk. Oncotarget 5, 7431-7445.   DOI
9 Blondy, S., David, V., Verdier, M., Mathonnet, M., Perraud, A. and Christou, N. (2020) 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci. 111, 3142-3154.   DOI
10 Cai, Y. Z., Mei, S., Jie, X., Luo, Q. and Corke, H. (2006) Structureradical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78, 2872-2888.   DOI
11 Chan, J. Y., Yuen, A. C., Chan, R. Y. and Chan, S. W. (2013) A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res. 27, 637-646.   DOI
12 Chen, X., Chen, X., Zhang, X., Wang, L., Cao, P., Rajamanickam, V., Wu, C., Zhou, H., Cai, Y., Liang, G. and Wang, Y. (2019) Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox. Biol. 21, 101061.   DOI
13 Chen, X. X., Leung, G. P., Zhang, Z. J., Xiao, J. B., Lao, L. X., Feng, F., Mak, J. C., Wang, Y., Sze, S. C. and Zhang, K. Y. (2017c) Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol. 107, 248-260.   DOI
14 Yu, L., Ma, R., Wang, Y. and Nishino, H. (1994) Potent anti-tumor activity and low toxicity of tubeimoside 1 isolated from Bolbostemma paniculatum. Planta Med. 60, 204-208.   DOI
15 Dou, C., Fang, C., Zhao, Y., Fu, X., Zhang, Y., Zhu, D., Wu, H., Liu, H., Zhang, J., Xu, W., Liu, Z., Wang, H., Li, D. and Wang, X. (2017) BC-02 eradicates liver cancer stem cells by upregulating the ROSdependent DNA damage. Int. J. Oncol. 51, 1775-1784.   DOI
16 Yan, J., Dou, X., Zhou, J., Xiong, Y., Mo, L., Li, L. and Lei, Y. (2019) Tubeimoside-I sensitizes colorectal cancer cells to chemotherapy by inducing ROS-mediated impaired autophagolysosomes accumulation. J. Exp. Clin. Cancer Res. 38, 353.   DOI
17 Zhang, D., Zhou, Q., Huang, D., He, L., Zhang, H., Hu, B., Peng, H. and Ren, D. (2019) ROS/JNK/c-Jun axis is involved in oridonininduced caspase-dependent apoptosis in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 513, 594-601.   DOI
18 Zhang, D. D. (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789.   DOI
19 Zhang, R., Pan, T., Xiang, Y., Zhang, M., Feng, J., Liu, S., Duan, T., Chen, P., Zhai, B., Chen, X., Wang, W., Chen, B., Han, X., Chen, L., Yan, L., Jin, T., Liu, Y., Li, G., Huang, X., Zhang, W., Sun, Y., Li, Q., Zhang, Q., Zhuo, L., Xie, T., Wu, Q. and Sui, X. (2020) betaElemene reverses the resistance of p53-deficient colorectal cancer cells to 5-fluorouracil by inducing pro-death autophagy and cyclin D3-dependent cycle arrest. Front. Bioeng. Biotechnol. 8, 378.   DOI
20 Das, R., Bhattacharya, K., Sarkar, S., Samanta, S. K., Pal, B. C. and Mandal, C. (2014) Mahanine synergistically enhances cytotoxicity of 5-fluorouracil through ROS-mediated activation of PTEN and p53/p73 in colon carcinoma. Apoptosis 19, 149-164.   DOI
21 Gupte, A. and Mumper, R. J. (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 35, 32-46.   DOI
22 Fatfat, M., Merhi, R. A., Rahal, O., Stoyanovsky, D. A., Zaki, A., Haidar, H., Kagan, V. E., Gali-Muhtasib, H. and Machaca, K. (2014) Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer 14, 527.   DOI
23 Frei, E., 3rd, Elias, A., Wheeler, C., Richardson, P. and Hryniuk, W. (1998) The relationship between high-dose treatment and combination chemotherapy: the concept of summation dose intensity. Clin. Cancer Res. 4, 2027-2037.
24 Gorrini, C., Harris, I. S. and Mak, T. W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947.   DOI
25 Juhasz, A., Markel, S., Gaur, S., Liu, H., Lu, J., Jiang, G., Wu, X., Antony, S., Wu, Y., Melillo, G., Meitzler, J. L., Haines, D. C., Butcher, D., Roy, K. and Doroshow, J. H. (2017) NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J. Biol. Chem. 292, 7866-7887.   DOI
26 Zhao, H., Liu, Q., Wang, S., Dai, F., Cheng, X., Cheng, X., Chen, W., Zhang, M. and Chen, D. (2017) In vitro additive antitumor effects of dimethoxycurcumin and 5-fluorouracil in colon cancer cells. Cancer Med. 6, 1698-1706.   DOI
27 Zou, X., Liang, J., Sun, J., Hu, X., Lei, L., Wu, D. and Liu, L. (2016) Allicin sensitizes hepatocellular cancer cells to anti-tumor activity of 5-fluorouracil through ROS-mediated mitochondrial pathway. J. Pharmacol. Sci. 131, 233-240.   DOI
28 Zu, C., Qin, G., Yang, C., Liu, N., He, A., Zhang, M. and Zheng, X. (2018) Low dose Emodin induces tumor senescence for boosting breast cancer chemotherapy via silencing NRARP. Biochem. Biophys. Res. Commun. 505, 973-978.   DOI
29 Zhang, P., Lai, Z. L., Chen, H. F., Zhang, M., Wang, A., Jia, T., Sun, W. Q., Zhu, X. M., Chen, X. F., Zhao, Z. and Zhang, J. (2017) Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice. J. Exp. Clin. Cancer Res. 36, 190.   DOI
30 Zheng, W., Zhou, C. Y., Zhu, X. Q., Wang, X. J., Li, Z. Y., Chen, X. C., Chen, F., Che, X. Y. and Xie, X. (2018) Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death. Biomed. Pharmacother. 106, 175-182.   DOI
31 Jin, P., Wong, C. C., Mei, S., He, X., Qian, Y. and Sun, L. (2016) MK2206 co-treatment with 5-fluorouracil or doxorubicin enhances chemosensitivity and apoptosis in gastric cancer by attenuation of Akt phosphorylation. OncoTargets Ther. 9, 4387-4396.   DOI
32 Hashida, H., Takabayashi, A., Kanai, M., Adachi, M., Kondo, K., Kohno, N., Yamaoka, Y. and Miyake, M. (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122, 376-386.   DOI
33 Hu, X. F., Yao, J., Gao, S. G., Wang, X. S., Peng, X. Q., Yang, Y. T. and Feng, X. S. (2013) Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer. Asian Pac. J. Cancer Prev. 14, 5231-5235.   DOI
34 Hwang, I. T., Chung, Y. M., Kim, J. J., Chung, J. S., Kim, B. S., Kim, H. J., Kim, J. S. and Yoo, Y. D. (2007) Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem. Biophys. Res. Commun. 359, 304-310.   DOI
35 Ahmad, B., Khan, S., Nabi, G., Gamallat, Y., Su, P., Jamalat, Y., Duan, P. and Yao, L. (2019) Natural gypenosides: targeting cancer through different molecular pathways. Cancer Manag. Res. 11, 2287-2297.   DOI
36 Kim, J. S., Ahn, K. J., Kim, J. A., Kim, H. M., Lee, J. D., Lee, J. M., Kim, S. J. and Park, J. H. (2008) Role of reactive oxygen speciesmediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA. J. Bioenerg. Biomembr. 40, 607-618.   DOI
37 Kim, K. K., Lange, T. S., Singh, R. K., Brard, L. and Moore, R. G. (2012) Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C. BMC Cancer 12, 147.   DOI
38 Ko, Y. H., Pedersen, P. L. and Geschwind, J. F. (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 173, 83-91.   DOI
39 Afrin, S., Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, M., Amici, A., Cianciosi, D., Quiles, J. L. and Battino, M. (2018a) Manuka honey synergistically enhances the chemopreventive effect of 5-fluorouracil on human colon cancer cells by inducing oxidative stress and apoptosis, altering metabolic phenotypes and suppressing metastasis ability. Free Radic. Biol. Med. 126, 41-54.   DOI
40 Afrin, S., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y., Cianciosi, D., Reboredo-Rodriguez, P., Amici, A., Quiles, J. L. and Battino, M. (2018b) The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: the suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle. Food Funct. 9, 2145-2157.   DOI
41 Ak, T. and Gulcin, I. (2008) Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27-37.   DOI
42 Akhdar, H., Loyer, P., Rauch, C., Corlu, A., Guillouzo, A. and Morel, F. (2009) Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur. J. Cancer 45, 2219-2227.   DOI
43 Mehrzad, V., Roayaei, M., Peikar, M. S., Nouranian, E., Mokarian, F., Khani, M. and Farzannia, S. (2016) Bevacizumab plus FOLFOX or FOLFIRI regimens on patients with unresectable liver-only metastases of metastatic colorectal cancer. Adv. Biomed. Res. 5, 10.
44 Mina-Osorio, P. (2008) The moonlighting enzyme CD13: old and new functions to target. Trends Mol. Med. 14, 361-371.   DOI
45 Li, M., Cui, Z. G., Zakki, S. A., Feng, Q., Sun, L., Feril, L. B., Jr. and Inadera, H. (2019a) Aluminum chloride causes 5-fluorouracil resistance in hepatocellular carcinoma HepG2 cells. J. Cell. Physiol. 234, 20249-20265.   DOI
46 Kong, L., Wang, X., Zhang, K., Yuan, W., Yang, Q., Fan, J., Wang, P. and Liu, Q. (2015) Gypenosides synergistically enhances the anti-tumor effect of 5-fluorouracil on colorectal cancer in vitro and in vivo: a role for oxidative stress-mediated DNA damage and p53 activation. PLoS ONE 10, e0137888.   DOI
47 Kumar, B., Koul, S., Khandrika, L., Meacham, R. B. and Koul, H. K. (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 68, 1777-1785.   DOI
48 Li, J., Hou, N., Faried, A., Tsutsumi, S. and Kuwano, H. (2010) Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur. J. Cancer 46, 1900-1909.   DOI
49 Moon, D., Kang, H. K., Kim, J. and Yoon, S. P. (2020) Yeast extract induces apoptosis and cell cycle arrest via activating p38 signal pathway in colorectal cancer cells. Ann. Clin. Lab. Sci. 50, 31-44.
50 Moi, P., Chan, K., Asunis, I., Cao, A. and Kan, Y. W. (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. U.S.A. 91, 9926-9930.   DOI
51 Nishikawa, M. (2008) Reactive oxygen species in tumor metastasis. Cancer Lett. 266, 53-59.   DOI
52 Okada, M., Shibuya, K., Sato, A., Seino, S., Suzuki, S., Seino, M. and Kitanaka, C. (2014) Targeting the K-Ras--JNK axis eliminates cancer stem-like cells and prevents pancreatic tumor formation. Oncotarget 5, 5100-5112.   DOI
53 Okano, J., Nagahara, T., Matsumoto, K. and Murawaki, Y. (2008) Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin. Pharmacol. Toxicol. 102, 543-551.   DOI
54 Pazdur, R., Hoff, P. M., Medgyesy, D., Royce, M. and Brito, R. (1998) The oral fluorouracil prodrugs. Oncology (Williston Park) 12, 48-51.
55 Liu, R., Chen, Y., Liu, G., Li, C., Song, Y., Cao, Z., Li, W., Hu, J., Lu, C. and Liu, Y. (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11, 797.   DOI
56 Liang, W., Cai, A., Chen, G., Xi, H., Wu, X., Cui, J., Zhang, K., Zhao, X., Yu, J., Wei, B. and Chen, L. (2016) Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci. Rep. 6, 38267.   DOI
57 Lin, C. K., Liu, S. T., Wu, Z. S., Wang, Y. C. and Huang, S. M. (2021) Mechanisms of cisplatin in combination with repurposed drugs against human endometrial carcinoma cells. Life (Basel) 11, 160.
58 Liu, M. P., Liao, M., Dai, C., Chen, J. F., Yang, C. J., Liu, M., Chen, Z. G. and Yao, M. C. (2016a) Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondriacaspase-dependent apoptotic pathway. Sci. Rep. 6, 34245.   DOI
59 Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338.   DOI
60 Kodach, L. L., Bos, C. L., Duran, N., Peppelenbosch, M. P., Ferreira, C. V. and Hardwick, J. C. (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27, 508-516.   DOI
61 Li, C. Y., Wang, E. Q., Cheng, Y. and Bao, J. K. (2011) Oridonin: an active diterpenoid targeting cell cycle arrest, apoptotic and autophagic pathways for cancer therapeutics. Int. J. Biochem. Cell Biol. 43, 701-704.   DOI
62 Li, Q., Wei, L., Lin, S., Chen, Y., Lin, J. and Peng, J. (2019b) Synergistic effect of kaempferol and 5fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway. Mol. Med. Rep. 20, 728-734.
63 Liou, G. Y. and Storz, P. (2010) Reactive oxygen species in cancer. Free Radic. Res. 44, 479-496.   DOI
64 Liu, Y., Li, Q., Zhou, L., Xie, N., Nice, E. C., Zhang, H., Huang, C. and Lei, Y. (2016b) Cancer drug resistance: redox resetting renders a way. Oncotarget 7, 42740-42761.
65 Sui, X., Kong, N., Wang, X., Fang, Y., Hu, X., Xu, Y., Chen, W., Wang, K., Li, D., Jin, W., Lou, F., Zheng, Y., Hu, H., Gong, L., Zhou, X., Pan, H. and Han, W. (2014) JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci. Rep. 4, 4694.   DOI
66 Look, A. T., Ashmun, R. A., Shapiro, L. H. and Peiper, S. C. (1989) Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest. 83, 1299-1307.   DOI
67 Soriano, F. X., Baxter, P., Murray, L. M., Sporn, M. B., Gillingwater, T. H. and Hardingham, G. E. (2009) Transcriptional regulation of the AP-1 and Nrf2 target gene sulfiredoxin. Mol. Cells 27, 279-282.   DOI
68 Souglakos, J., Androulakis, N., Syrigos, K., Polyzos, A., Ziras, N., Athanasiadis, A., Kakolyris, S., Tsousis, S., Kouroussis, C., Vamvakas, L., Kalykaki, A., Samonis, G., Mavroudis, D. and Georgoulias, V. (2006) FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the hellenic oncology research group (HORG). Br. J. Cancer 94, 798-805.   DOI
69 Sun, Z. P., Zhang, J., Shi, L. H., Zhang, X. R., Duan, Y., Xu, W. F., Dai, G. and Wang, X. J. (2015) Aminopeptidase N inhibitor 4cc synergizes antitumor effects of 5-fluorouracil on human liver cancer cells through ROS-dependent CD13 inhibition. Biomed. Pharmacother. 76, 65-72.   DOI
70 Alnuqaydan, A. M., Rah, B., Almutary, A. G. and Chauhan, S. S. (2020) Synergistic antitumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am. J. Cancer Res. 10, 799-815.
71 Chen, J. C., Hsieh, M. C., Lin, S. H., Lin, C. C., Hsi, Y. T., Lo, Y. S., Chuang, Y. C., Hsieh, M. J. and Chen, M. K. (2017a) Coronarin D induces reactive oxygen species-mediated cell death in human nasopharyngeal cancer cells through inhibition of p38 MAPK and activation of JNK. Oncotarget 8, 108006-108019.   DOI
72 Carvalho, M., Silva, B. M., Silva, R., Valentao, P., Andrade, P. B. and Bastos, M. L. (2010) First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells. J. Agric. Food Chem. 58, 3366-3370.   DOI
73 Bai, X., Chen, Y., Hou, X., Huang, M. and Jin, J. (2016) Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 48, 541-567.   DOI
74 Brewer, G. J., Dick, R. D., Yuzbasiyan-Gurkin, V., Tankanow, R., Young, A. B. and Kluin, K. J. (1991) Initial therapy of patients with Wilson's disease with tetrathiomolybdate. Arch. Neurol. 48, 42-47.   DOI
75 Choi, S. M., Cho, Y. S., Park, G., Lee, S. K. and Chun, K. S. (2021) Celecoxib induces apoptosis through Akt inhibition in 5-fluorouracilresistant gastric cancer cells. Toxicol. Res. 37, 25-33.   DOI
76 Bailly, C. (2020) Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol. Res. Pract. 216, 152946.   DOI
77 Chen, T. and Wong, Y. S. (2009) Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed. Pharmacother. 63, 105-113.   DOI
78 Mates, J. M. and Sanchez-Jimenez, F. M. (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32, 157-170.   DOI
79 Chen, X., Yang, L., Oppenheim, J. J. and Howard, M. Z. (2002) Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 16, 199-209.   DOI
80 Chen, X. X., Lam, K. H., Chen, Q. X., Leung, G. P., Tang, S. C. W., Sze, S. C., Xiao, J. B., Feng, F., Wang, Y., Zhang, K. Y. and Zhang, Z. J. (2017b) Ficus virens proanthocyanidins induced apoptosis in breast cancer cells concomitantly ameliorated 5-fluorouracil induced intestinal mucositis in rats. Food Chem. Toxicol. 110, 49-61.   DOI
81 Chong, D., Ma, L., Liu, F., Zhang, Z., Zhao, S., Huo, Q., Zhang, P., Zheng, H. and Liu, H. (2017) Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 28, 831-840.   DOI
82 Wei, X., Mo, X., An, F., Ji, X. and Lu, Y. (2018) 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, a potent Nrf2/ARE pathway inhibitor, reverses drug resistance by decreasing glutathione synthesis and drug efflux in BEL-7402/5-FU cells. Food Chem. Toxicol. 119, 252-259.   DOI
83 Ikeda, N., Nakajima, Y., Tokuhara, T., Hattori, N., Sho, M., Kanehiro, H. and Miyake, M. (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin. Cancer Res. 9, 1503-1508.
84 Jarmi, T. and Agarwal, A. (2009) Heme oxygenase and renal disease. Curr. Hypertens. Rep. 11, 56-62.   DOI
85 Wang, M., Huang, C., Su, Y., Yang, C., Xia, Q. and Xu, D. J. (2017a) Astragaloside II sensitizes human hepatocellular carcinoma cells to 5-fluorouracil via suppression of autophagy. J. Pharm. Pharmacol. 69, 743-752.   DOI
86 Wang, X., Wang, Y., Gu, J., Zhou, D., He, Z., Wang, X. and Ferrone, S. (2017b) ADAM12-L confers acquired 5-fluorouracil resistance in breast cancer cells. Sci. Rep. 7, 9687.   DOI
87 Wei, H. (1992) Activation of oncogenes and/or inactivation of anti-oncogenes by reactive oxygen species. Med. Hypotheses 39, 267-270.   DOI
88 You, F., Aoki, K., Ito, Y. and Nakashima, S. (2009) AKT plays a pivotal role in the acquisition of resistance to 5-fluorouracil in human squamous carcinoma cells. Mol. Med. Rep. 2, 609-613.
89 Xie, X., Liu, H., Wang, Y., Zhou, Y., Yu, H., Li, G., Ruan, Z., Li, F., Wang, X. and Zhang, J. (2016) Nicotinamide N-methyltransferase enhances resistance to 5-fluorouracil in colorectal cancer cells through inhibition of the ASK1-p38 MAPK pathway. Oncotarget 7, 45837-45848.   DOI
90 Xu, Y., Wellner, D. and Scheinberg, D. A. (1997) Cryptic and regulatory epitopes in CD13/aminopeptidase N. Exp. Hematol. 25, 521-529.
91 He, C., Rong, R., Liu, J., Wan, J., Zhou, K. and Kang, J. X. (2012) Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells. Chin. Med. 7, 11.   DOI
92 Fan, C., Chen, J., Wang, Y., Wong, Y. S., Zhang, Y., Zheng, W., Cao, W. and Chen, T. (2013) Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic. Biol. Med. 65, 305-316.   DOI
93 Glick, D., Barth, S. and Macleod, K. F. (2010) Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12.   DOI
94 Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Ohkuma, M., Kim, H. M., Akita, H., Takiuchi, D., Hatano, H., Nagano, H., Barnard, G. F., Doki, Y. and Mori, M. (2010) CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326-3339.   DOI
95 Hsieh, M. Y., Hsieh, M. J., Lo, Y. S., Lin, C. C., Chuang, Y. C., Chen, M. K. and Chou, M. C. (2020) Modulating effect of Coronarin D in 5-fluorouracil resistance human oral cancer cell lines induced apoptosis and cell cycle arrest through JNK1/2 signaling pathway. Biomed. Pharmacother. 128, 110318.   DOI
96 Tokuhara, T., Hattori, N., Ishida, H., Hirai, T., Higashiyama, M., Kodama, K. and Miyake, M. (2006) Clinical significance of aminopeptidase N in non-small cell lung cancer. Clin. Cancer Res. 12, 3971-3978.   DOI
97 Qi, Y., Qi, W., Liu, S., Sun, L., Ding, A., Yu, G., Li, H., Wang, Y., Qiu, W. and Lv, J. (2020) TSPAN9 suppresses the chemosensitivity of gastric cancer to 5-fluorouracil by promoting autophagy. Cancer Cell Int. 20, 4.   DOI
98 Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. and Nitiss, J. L. (1999) Biologically active carbazole alkaloids from Murraya koenigii. J. Agric. Food Chem. 47, 444-447.   DOI
99 Suzuki, S., Okada, M., Shibuya, K., Seino, M., Sato, A., Takeda, H., Seino, S., Yoshioka, T. and Kitanaka, C. (2015) JNK suppression of chemotherapeutic agents-induced ROS confers chemoresistance on pancreatic cancer stem cells. Oncotarget 6, 458-470.   DOI
100 Tang, J., Feng, Y., Tsao, S., Wang, N., Curtain, R. and Wang, Y. (2009) Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of traditional use and biomedical investigations. J. Ethnopharmacol. 126, 5-17.   DOI
101 Tong, H., Li, T., Qiu, W. and Zhu, Z. (2019) Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy. Oncol. Lett. 18, 5709-5716.
102 Torres, M. and Forman, H. J. (2003) Redox signaling and the MAP kinase pathways. BioFactors 17, 287-296.   DOI
103 Kim, K. K., Kawar, N. M., Singh, R. K., Lange, T. S., Brard, L. and Moore, R. G. (2011) Tetrathiomolybdate induces doxorubicin sensitivity in resistant tumor cell lines. Gynecol. Oncol. 122, 183-189.   DOI
104 Hu, X. Y., Liang, J. Y., Guo, X. J., Liu, L. and Guo, Y. B. (2015) 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential (DeltaPsim)-mediated apoptosis in hepatocellular carcinoma. Clin. Exp. Pharmacol. Physiol. 42, 146-153.   DOI
105 Huang, Q., Lu, G., Shen, H. M., Chung, M. C. and Ong, C. N. (2007) Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27, 609-630.   DOI
106 Kang, K. A., Piao, M. J., Kim, K. C., Kang, H. K., Chang, W. Y., Park, I. C., Keum, Y. S., Surh, Y. J. and Hyun, J. W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183.   DOI
107 Kim, J. K., Kang, K. A., Piao, M. J., Ryu, Y. S., Han, X., Fernando, P. M., Oh, M. C., Park, J. E., Shilnikova, K., Boo, S. J., Na, S. Y., Jeong, Y. J., Jeong, S. U. and Hyun, J. W. (2016) Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells. Environ. Toxicol. Pharmacol. 44, 128-133.   DOI
108 Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK signaling in cancer cell survival. Med. Res. Rev. 39, 2082-2104.   DOI
109 Ushio-Fukai, M. and Nakamura, Y. (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 266, 37-52.   DOI
110 Wang, Z., Gu, C., Wang, X., Lang, Y., Wu, Y., Wu, X., Zhu, X., Wang, K. and Yang, H. (2019) Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med. Oncol. 36, 97.   DOI