• Title/Summary/Keyword: ROS/RNS

Search Result 46, Processing Time 0.032 seconds

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Reactive Oxygen Species and Nitrogen Species Differentially Regulate Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are implicated in cellular signaling processes and as a cause of oxidative stress. Recent studies indicate that ROS and RNS are important signaling molecules involved in nociceptive transmission. Xanthine oxidase (XO) system is a well-known system for superoxide anions ($O{_2}^{{\cdot}_-}$) generation, and sodium nitroprusside (SNP) is a representative nitric oxide (NO) donor. Patch clamp recording in spinal slices was used to investigate the role of $O{_2}^{{\cdot}_-}$ and NO on substantia gelatinosa (SG) neuronal excitability. Application of xanthine and xanthine oxidase (X/XO) compound induced membrane depolarization. Low concentration SNP ($10{\mu}M$) induced depolarization of the membrane, whereas high concentration SNP (1 mM) evoked membrane hyperpolarization. These responses were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger). Addition of thapsigargin to an external calcium free solution for blocking synaptic transmission, led to significantly decreased X/XO-induced responses. Additionally, X/XO and SNP-induced responses were unchanged in the presence of intracellular applied PBN, indicative of the involvement of presynaptic action. Inclusion of GDP-${\beta}$-S or suramin (G protein inhibitors) in the patch pipette decreased SNP-induced responses, whereas it failed to decrease X/XO-induced responses. Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) decreased the effects of SNP, suggesting that these responses were mediated by direct oxidation of channel protein, whereas X/XO-induced responses were unchanged. These data suggested that ROS and RNS play distinct roles in the regulation of the membrane excitability of SG neurons related to the pain transmission.

Characterization of an Extracytoplasmic Chaperone Spy in Protecting Salmonella against Reactive Oxygen/Nitrogen Species

  • Park, Yoon Mee;Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with ${\lambda}$ Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in $H_2O_2$ containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to $H_2O_2$. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

Oxidative Stress and Skin Diseases: Possible Role of Physical Activity

  • Kruk, Joanna;Duchnik, Ewa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.561-568
    • /
    • 2014
  • Background: The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.

Scavenging Activities of Reactive Oxygen and Nitrogen Species by Junglans sinensis (호도(胡桃)의 활성산소 및 활성질소 제거 기전)

  • Jeong Ji-Cheon;Bae Sung-Min;Shin Hyeon-Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1615-1621
    • /
    • 2005
  • Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are widely implicated in the aging process and age-related diseases. The present study was carried out to investigate scavenging activities of Junglans sinensis extract and its subfraction using fluorescent probes, DCF-DA, DAF-2 and DHR 123. Jungians sinensis was washed and crushed. The crushed Junglans sinensis was extracted 3times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 16 g. Scavenging activities of $ONOO^-$ was measured by Kooy' method and ROS was measured by DCFDA assay. Junglans sinensis had the marked scavenging activites of $ONOO^-$, NO and $O_2^-$. Junglans sinensis scavenged $ONOO^-$ through electron donation and dose-dependently inhibited the nitration of bovine serum albumin by $ONOO^-$. Junglans sinensis also had ROS scavenging activity. Especially, ethylacetate fraction of Junglans sinensis showed the most effective scavenging activities for ROS and RNS. These results suggest that Junglans sinensis might be developed as an effective ROS and RNS scavenger Therefore, Junglans sinensis might be used as a preventive agent for the aging and relevant to aging of illness.

The Effect of Neodymium Oxide on the Generation of Reactive Oxygen Species and DNA Oxidative Damage by Intratracheal Instillation (산화네오디뮴 기도투여에 따른 폐내 활성산소종 발생 및 DNA의 산화적 손상)

  • Kim, Jong-Kyu;Kim, Soo-Jin;Kang, Min-Gu;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.336-344
    • /
    • 2014
  • Objectives: This study was performed to assay the effect of neodymium oxide on the generation of reactive oxygen species and DNA oxidative damage by intratracheal instillation. Methods: Two groups of rats were exposed to neodymium oxide($Nd_2O_3$) via intratracheal instillation with doses of 0.5 mg and 2.0 mg, respectively. At two days and at 12 weeks after exposure, the contents of neodymium oxide in the lung, liver, kidney, heart and brain, leukocyte, olive tail moment, ROS, RNS, lactate dehydrogenase, albumin, cytokine and MDA from BALF were measured. Results: Neodymium oxide contents in the liver, kidney, heart, and brain were detected at less than $1{\mu}g/g$ tissue concentration. However, in the lungs at four weeks the highest amount were detected and then found to be drastically reduced at 12 weeks. ROS and RNS in bronchoalveolar lavage increased in concentration dependently at two days, four weeks and 12 weeks after neodymium oxide instillation. However, ROS and RNS decreased with the passage of time. At two days the total number of WBC in BALF in the high concentration group was significantly increased, and at four weeks the total number of WBC were significantly increased in the low and high concentration groups(p<0.01). At two days after exposure, the LDH of the low and high concentration groups was significantly increased. At 12 weeks, only the LDH of the high concentration group was significantly increased compared to in the control group(p<0.01). As a result of Comet assay, after two days, damage to the DNA of the low and high concentration groups was observed. Conclusions: Intratracheal instillation of neodymium oxide induces the generation of ROS and DNA damage in rats.