• Title/Summary/Keyword: RO Membrane

Search Result 328, Processing Time 0.028 seconds

Reuse potential of spent RO membrane for NF and UF process

  • Ng, Zhi Chien;Chong, Chun Yew;Sunarya, Muhammad Hamdan;Lau, Woei Jye;Liang, Yong Yeow;Fong, See Yin;Ismail, Ahmad Fauzi
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.323-331
    • /
    • 2020
  • With the increasing demand on reverse osmosis (RO) membranes for water purification worldwide, the number of disposed membrane elements is expected to increase accordingly. Thus, recycling and reuse of end-of-life RO membranes should be a global environmental action. In this work, we aim to reuse the spent RO membrane for nanofiltration (NF) and ultrafiltration (UF) process by subjecting the spent membrane to solvent and oxidizing solution treatment, respectively. Our results showed that solvent-treated RO membrane could perform as good as commercial NF membrane by achieving similar separation efficiencies, but with reduced water permeability due to membrane surface fouling. By degrading the polyamide layer of RO membrane, the transformed membrane could achieve high water permeability (85.6 L/㎡.h.bar) and excellent rejection against macromolecules (at least 87.4%), suggesting its reuse potential as UF membrane. More importantly, our findings showed that in-situ transformation on the spent RO membrane using solvent and oxidizing solution could be safely conducted as the properties of the entire spiral wound element did not show significant changes upon prolonged exposure of these two solutions. Our findings are important to open up new possibilities for the discarded RO membranes for reuse in NF and UF process, prolonging the lifespan of spent membranes and promoting the sustainability of the membrane process.

역삼투막 재료

  • 김창근
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.09a
    • /
    • pp.31-55
    • /
    • 1998
  • 1. Performance of RO membrane depends on chain structure (packing density) 2. Crosslinking of main chain is essential for the high performance RO membranes 3. Various bisphenols and polyaminostyrene can be promising materials for the fabrication of RO membranes. 4. By using of blend technique of reactant, we can expect broad spectrum of RO membrane and synergetic effects in membrane performance.

  • PDF

역삼투막의 제조 및 최근 동향

  • 구자영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.09a
    • /
    • pp.1-30
    • /
    • 1998
  • 1. RO History 2. Asymmetric Membranes by Phase Inversion 3. Thin Film Composite (TFC) Membrane 4. Structure and Property Relationship of TFC Membrane 5. Membrane Materials 6. Tranport Mechanism(Model) 7. Membrane Characters in Separation Process 8. Concentration Polarization and Fouling Phenomenon 9. RO Membrane Module Configuration and System Design 10. Futrue Trend in RO Industry

  • PDF

The Application of RO Membrane System in Municipal Wastewater Reclamation (RO Membrane System을 이용한 도시하수처리)

  • 이규현;안준수;유제강
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.78-95
    • /
    • 1991
  • Water factory 21(WF 2) in Orange County California, is a advanced wastewater treatment(AWT) plant designed to reclaim biologically treated munidpal wastewater for injection into a seawater barrier system. Processes included are lime treatment air stripping, filtration, activated carbon adsorption, reverse osmosis(RO), and chlorination. The effectiveness of each treatment process is presented including pretreatment, RO dimineralization. The data collected show that the processes, including RO, used at WF-21 are capable of producing a very high quality water on a reliable basis. Treatment reduced all contaminants, to levels below national primary drinldng water regulation maximum contaminant levels. It was found that lime clarified secondary effluent can be used as feedwater to a RO dimineralizer. Experiments with new low pressure membrane(250psi) show great potential for reducing RO cost.

  • PDF

Evaluation of membrane fouling by MBR operation conditions in MBR-RO (MBR-RO 공정에서 MBR 운전조건에 따른 막오염 특성 및 RO 공정 막오염 평가)

  • Park, Kitae;Park, Jungwoo;Park, Junghoon;Kang, Heeseok;Kim, Jihoon;Kim, Hyungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.545-551
    • /
    • 2016
  • This study compares characteristic of membrane fouling in MBR-RO systems. In lab. scale MBRs test, MBRs were operated at different Flux(10, 20, 30 & 40 LMH) and temperature(10, 15, 20, 25 & $30^{\circ}C$). The results show that MBR permeate was measured lower amounts of organic substances in Higher flux and lower temperature and led to lower RO fouling rates. The main cause was that due to cake fouling formed on membrane surfaces in MBRs. Under both cases, Cake layer of membrane surfaces formed in MBRs removed RO fouling factors, polysaccharide and protein, because of cake layer attached on membrane surfaces greater amounts of organic substances. This study implies that optimization of MBR with operating conditions is a crucial strategy to RO membrane fouling control.

NOM fouling and Removal of Micro-pollutants in RO and NF Membrane processes (RO 및 NF막에서의 부식질에 의한 Fouling 및 미량오염물질의 제거)

  • Wang, Chang-Keun;Cha, Joon-Chul;Lee, Yong-Hyun;Kim, Su-Dong;Liu, Ju-Whan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • This study investigated the phenomena of membrane fouling by NOM and the effect of the fouling on removal of micro-pollutants. NOM has a great effect on decline of permeate flux. Permeate flow rate was reduced by 88% in RO and 34.8% in NF for 323hr operation period. Removal rate of $UV_{254}$, is 87.4% in RO and 78.5% in NF and removal rate of DOC is 42.7% in RO and 32.9% in NF for 2mg/l humic acid. Removal efficiency of the micro-pollutants by the RO and NF membranes fouled by humic acid was mostly lower than that by the new membrane. The concentration polarization which affects the flux and the rejection was thought to occur in the active layer of the membrane, as the membrane was getting fouled.

A study on reducing scale formation on the RO membrane using carbon dioxide (CO2를 이용한 RO 막의 스케일 생성 저감 연구)

  • Pyo, Minsu;Choi, Younggyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.391-399
    • /
    • 2016
  • In this study, carbon dioxide ($CO_2$) was used as an inhibitor of scale production on the surface of RO membrane. In order to compare the effects of $CO_2$ injection on scale production, four RO modules: 1) without $CO_2$ injection and anti-scalant (RO module #1), 2) with only $CO_2$ injection (RO module #2), 3) with only anti-scalant (RO module #3), 4) with both $CO_2$ injection and anti-scalant (RO module #4), were operated for 60 days under constant flux mode. The trans-membrane pressure (TMP) was observed to decrease significantly in RO modules with $CO_2$ injection as compared with the other RO modules. When the feed water pH was controlled at 5.0 by injecting $CO_2$, the maximum TMP in RO modules #2 and #4 was founded to decrease by 42 and 40%, respectively. Moreover, the $Ca^{2+}$ concentration in the concentrate was 20mg/L lower in RO modules without $CO_2$ injection which is attributed to the scale formation on the surface of the RO membranes. The SEM-EDS analysis further showed a serious fouled RO membrane surface in RO modules #1 and #3.

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Development of a Fluorescent Sensor Based on Resazurin and Hydrotalcite for the Determination of Ethanol in Alcoholic Beverages

  • Hong Dinh Duong;Juyeon Kim;Jong Il Rhee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2024
  • In this study, a fluorescent ethanol sensor is developed to determine the ethanol concentration in the liquid phase. The sensor is developed using a complex of resazurin (RA)/resorufin (RO) and a hydrotalcite (HT) catalyst in a sol-gel matrix of methyltrimethoxysilane (MTMS) to produce a fluorescent ethanol-sensing membrane (RA/RO*HT membrane). The operation mechanism of the RA/RO*HT membrane is based on (i) the oxidation of ethanol to acetaldehyde and (ii) the reduction of RA to RO, through electron flows followed by EtOH ↔ HT ↔ RA/RO ↔ EtOH interactions. These possible redox reactions can lead to an increased fluorescence intensity of the RA/RO*HT membrane as the ethanol concentration increases. The RA/RO*HT membrane shows a linear detection range of 1-20 vol.% EtOH with limit of detection (LOD) of 0.178%. Additionally, the RA/RO*HT membrane has high sensitivity and accuracy for determining the alcohol content in several Korean alcoholic beverages.

Effect of Feed Monochloramination on Performance of RO Membranes (NH2Cl 사용으로 인한 RO 막의 성능 향상)

  • Hong, Seungkwan;Reiss, Robert;Taylor, James S.;Beverly, Sharon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.312-317
    • /
    • 2005
  • The 15 month pilot study was performed to investigate the effect of pretreatment by monochloramine ($NH_2Cl$) on the performance of RO membranes made of cellulose acetate (CA) and polyamide (PA). Both RO membranes experienced severe biological fouling without any pretreatment during the treatment of highly organic surface water in Florida, USA. Feed monochloramination at 5 mg/L significantly minimized productivity loss by effective control of biofouling. The CA membrane did not show any structural damages by monochloramine, while the PA membrane suffered from a gradual loss of membrane integrity by chlorine oxidation, which was characterized as an increase in productivity and a decrease in selectivity. The degradation of PA membrane increased with increasing monochloramine dose.