• Title/Summary/Keyword: RNase E

Search Result 33, Processing Time 0.021 seconds

Proteolysis of the Reverse Transcriptase of Hepatitis B Virus by Lon Protease in E. coli

  • Han, Joo-Seok;Park, Jae-Yong;Hwang, Deog-Su
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.195-198
    • /
    • 2001
  • Hepatitis B virus (HBV) polymerase, which possesses the activities of terminal binding, DNA polymerase, reverse transcriptase and RNaseH, has been shown to accomplish viral DNA replication through a pregenomic intermediate. Because the HBV polymerase has not been purified, the expression of HBV polymerase was examined in an E. coli expression system that is under the regulation of arabinose operon. The expressed individual domain containing terminal binding protein, polymerase, or RNaseH turned out to be insoluble. The activities of those domains were not able to be recovered by denaturation and renaturation using urea or guanidine-HCI. The expressed reverse transcriptase containing the polymerase and RNaseH domains became extensively degraded, whereas the proteolysis was reduced in a Ion- mutant. These results indicate that Lon protease proteolyzes the HBV reverse transcriptase expressed in E. coli.

  • PDF

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

5' Processing of RNA I in an Escherichia coli Strain Carrying the rnpA49 Mutation

  • Jung, Young-Hwan;Park, Jung-Won;Kim, Se-Mi;Cho, Bong-Rae;Lee, Young-Hoon
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.162-165
    • /
    • 1997
  • RNA I. a negative controller of ColE1-type plasmid replication, is metabolized by several RNases in Escherichia coli. Two small derivatives of RNA I are accumulated at nonpermissive temperatures in an E. coli strain carrying the rnpA49 mutation, a thermosensitive mutation in the rnpA gene encoding the protein component of RNase P. A primer extension analysis was carried out to compare 5' processing of RNA I in the E. coli rnpA49 cells at both permissive and nonpermissive temperatures. Derivatives of RNA I having different 5' ends were observed in the cells grown at permissive and nonpermissive temperatures. Some of the derivatives may be generated by the cleavage of RNase P.

  • PDF

Improved Detection of Viable Escherichia coli O157:H7 in Milk by Using Reverse Transcriptase-PCR

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A sensitive reverse transcriptase-PCR (RT-PCR) method to detect viable Escherichia coli O157:H7 in milk was established. The primer sets were designed based on the nucleotide sequences of the rfbE (per) and wbdN genes in the O157 antigen gene cluster of E. coli O157:H7. RT-PCR using five different primer sets yielded DNA with sizes of 655, 518, 450, and 149-bp, respectively. All five of the E. coli O157:H7 strains were detected by RT-PCR, but 11 other bacterial species were not. The sensitivity of RT-PCR was improved by adding yeast tRNA as a carrier to the crude RNA extract. The RT-PCR amplifying the 149-bp DNA fragment was the most sensitive for detecting E. coli O157:H7 and the most refractory to the bactericidal treatments. Heat treatment at $65^{\circ}C$ for 30 min was the least inhibitory of all bactericidal treatments. Treatment with RNase A strongly inhibited the RT-PCR of heated milk but not unheated milk. This study described RT-PCR methods that are specific and sensitive with a detection limit of 10 E. coli O157:H7 cells, and showed that pre-treating milk samples with RNase A improved the specificity to detect viable bacteria by RT-PCR.

A Novel Role of Classical Swine Fever Virus Erns Glycoprotein in Counteracting the Newcastle Disease Virus (NDV)-mediated IFN-β Induction

  • Xia, Yan-Hua;Chen, Liu;Pan, Zi-Shu;Zhang, Chu-Yu
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.611-616
    • /
    • 2007
  • $E^{rns}$ is an envelope glycoprotein of classical swine fever virus (CSFV) and has an unusual feature of RNase activity. In the present study, we demonstrate that $E^{rns}$ counteracts Newcastle disease virus (NDV)-mediated induction of IFN-$\beta$. For this purpose, $E^{rns}$ fused to the enhanced green fluorescent protein (EGFP) was transiently expressed in porcine kidney 15 (PK15) cells. In luciferase activity assay, $E^{rns}$-EGFP was found to prevent IFN-$\beta$ promoter-driven luciferase expression and block the induction of IFN-$\beta$ promoter mediated by NDV in a dose-dependent manner. Through IFN-specific semi-quantitative RT-PCR detection, obvious decrease of IFN-$\beta$ mRNA in NDV-infected PK15 cells was observed in the presence of $E^{rns}$-EGFP. In contrast, EGFP alone showed none of this block capacity. In addition, $E^{rns}$-EGFP mutations with RNase inactivation were also found to block NDV-mediated induction of IFN-$\beta$. These evidences establish a novel function for CSFV $E^{rns}$ glycoprotein in counteraction of the IFN-$\beta$ induction pathway.

Construction of Complementary DNA Library and cDNA Cloning for Cy Strain of Odontoglossum Ringspot Virus Genomic RNA (오돈토글로썸 윤문 바이러스 Cy계통 게놈 RNA의 cDNA 구축 및 유전자 크로닝)

  • 류기현;박원목
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 1994
  • Genomic RNA was extracted from Cy strain of odontoglossum ringspot tobamovirus (ORSV-Cy) isolated from infected leaves of tobacco cv. Samsun. Size of the genomic RNA was about 6.6 kb in length. The genomic RNA was fractionated using Sephadex G-50 column chromatography into 2 fractions. They were polyadenylated at their 3'-end using E. coli poly(A) polymerase. Polyadenylated viral RNA was recovered by oligo (dT) primer adapter containing NotI restriction site and Moloney murine leukemia virus SuperScript reverse transcriptase (RNase H-). Second-strand cDNA was synthesized by using E. coli DNA ligase, E. coli DNA polymerase I and E. coli RNase H. Recombinant plasmids containing cDNAs for ORSV-Cy RNA ranged from about 800 bp to 3,000 bp. Among the selected 238 recombinants, pORCY-124 clone was the largest one covering 3'-terminal half of the viral RNA. This clone contained two restriction sites for EcoRI and XbaI and one site for AccI, AvaI, BglII, BstXI, HindIII, PstI, and TthIII 1. respectively. The clone contained partial viral replicase, a full-length movement protein and a complete coat protein genes followed by a 3' untranslated region of 414 nucleotides based on restriction mapping and nucleotide sequencing analyses. Clones pORCY-028, -068, -072, -187 and -224 were overlapped with the pORCY-124. Clones pORCY-014 and -095 covered 5' half upstream from the middle region of the viral RNA, which was estimated based on restriction mapping and partial sequence analysis. Constructed cDNA library covered more than 90% of the viral genome.

  • PDF

Characterization of Echinostoma cinetorchis endoribonuclease, RNase H

  • Lim, Sung-Bin;Cha, Seok Ho;Jegal, Seung;Jun, Hojong;Park, Seo Hye;Jeon, Bo-Young;Pak, Jhang Ho;Bakh, Young Yil;Kim, Tong-Soo;Lee, Hyeong-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.4
    • /
    • pp.451-455
    • /
    • 2017
  • Echinostoma cinetorchis is an oriental intestinal fluke causing significant pathological damage to the small intestine. The aim of this study was to determine a full-length cDNA sequence of E. cinetorchis endoribonuclease (RNase H; EcRNH) and to elucidate its molecular biological characters. EcRNH consisted of 308 amino acids and showed low similarity to endoribonucleases of other parasites (<40%). EcRNH had an active site centered on a putative DDEED motif instead of DEDD conserved in other species. A recombinant EcRNH produced as a soluble form in Escherichia coli showed enzymatic activity to cleave the 3'-O-P bond of RNA in a DNA-RNA duplex, producing 3'-hydroxyl and 5'-phosphate. These findings may contribute to develop antisense oligonucleotides which could damage echinostomes and other flukes.

Complementary DNA Cloning of Genomic RNA in Orchid Strain of Tobacco Mosaic Virus

  • Won Mok Park
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.349-355
    • /
    • 1994
  • Viral RNA was extracted from a purified orchid strain of tobacco mosaic virus (TMV-O) from Cymbidium "Grace Kelly". Polyadenylated viral RNAs were primed with Not I-oligo (dT) primer-adapter. First-strand cDNAs were reversely transcribed by Moloney murine leukaemia virus reverse transcriptase (RNAse H-), and then second-strand cDNAs were synthesized by RNase H and DNA polymerase I. The resulting double-stranded cDNAs were ligated into pSPORT1 vector and transformed into competent E. coli strain JM109 cells. The size of cDNAs within the recombinant plasmids was ranging from 0.9 to 3.9 kb. Among the selected clones, pTMO-0205 and -0210 covered the 3' half and the 5' half of the viral genomic RNA, respectively, which were covering more than 99% of the viral genemo size based on sequencing analysis. Two cDNA fragments which were 3.1 kb BamHI and NotI fragement released from pTMO-0.205 and 3.3 kb SalI and BamHI fragment released from pTMO-0210 were ligated with T4 DNA ligase. The clone was almost entire length, lacking only 31 nucleotides from the 5' terminus based on the sequencing result. This method was shown to be efficiently applicable to other plant viral gnomic RNA for the construction of cDNA.n of cDNA.

  • PDF