• 제목/요약/키워드: RNA regulation

검색결과 1,585건 처리시간 0.028초

microRNA 발현 데이터의 상관관계 분석을 통한 microRNA Functional Family 탐색 (Defining microRNA functional families through correlation analysis of microRNA microarray data)

  • 남진우;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.13-15
    • /
    • 2006
  • microRNA는 유전자의 전사 후 과정에서 negative regulation을 담당하는 small noncoding RNA의 한 증류이다. 최근까지 330여개의 인간 microRNA가 발견되었지만 그들의 기능이 밝혀진 것은 소수에 불과하다. microRNA의 기능은 3'UTR에 불완전 상보결합을 통해 negative regulation을 받게 되는 유전자의 기능으로부터 유추되는 것이 일반적이다. 특별히 유전체상에 군집화 된 microRNA들은 하나의 전사체로부터 발현되는 것으로 판단되며, 같은 또는 관련된 기능을 하거나 같은 목표 유전자를 조절하기 위한 functional family일 가능성이 높다. 또한 이러한 functional family는 하나의 전사체로부터 발현되기 때문에, 조직별로 조건별로 같은 발현 패턴을 보여야 한다. 본 연구에서는 발현데이터로부터 microRNA functional family를 탐색하기 위해, 5개의 연구 그룹에서 공개한 조직별 microRNA 발현데이터를 표준화 작업을 거친 후 통합하고 k-nearest neighbor 알고리즘을 이용해 결측치를 보정한 후 microRNA 발현사이의 correlation을 계산한다. 이때 데이터 통합에서 생기는 문제에 robust한 결과를 얻기 위해 실제 발현데이터가 아닌 rank 데이터부터 correlation을 측정한다. 계산된 spearman ranked correlation 결과와 microRNA의 genomic coordination 정보로부터 34개의 functional family를 정의할 수 있었다.

  • PDF

Destabilization of TNF-α mRNA by Rapamycin

  • Park, Jong-Woo;Jeon, Ye-Ji;Lee, Jae-Cheol;Ahn, So-Ra;Ha, Shin-Won;Bang, So-Young;Park, Eun-Kyung;Yi, Sang-Ah;Lee, Min-Gyu;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.43-49
    • /
    • 2012
  • Stimulation of mast cells through the high affinity IgE receptor (Fc${\varepsilon}$RI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the Fc${\varepsilon}$RI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-${\alpha}$ in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-${\alpha}$ and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigeninduced TNF-${\alpha}$ mRNA level, while other kinase inhibitors have no effect on TNF-${\alpha}$ mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-${\alpha}$ expression. TNF-${\alpha}$ mRNA stability analysis using reporter construct containing TNF-${\alpha}$ adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-${\alpha}$ mRNA via regulating the AU-rich element of TNF-${\alpha}$ mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and $Ca^{2+}$chelator inhibitor, while TNF-${\alpha}$ mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-${\alpha}$ mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-${\alpha}$ expression in RBL-2H3 cells.

Effects of Down-regulation of HDAC6 Expression on Proliferation, Cell Cycling and Migration of Esophageal Squamous Cell Carcinoma Cells and Related Molecular Mechanisms

  • Li, Ning;Tie, Xiao-Jing;Liu, Pei-Jie;Zhang, Yan;Ren, Hong-Zheng;Gao, Xin;Xu, Zhi-Qiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.685-689
    • /
    • 2013
  • Objective: To study the effects of down-regulation of HDAC6 expression on proliferation, cell cycling and migration of esophageal squamous cell carcinoma (ESCC) cells and related molecular mechanisms. Methods: ESCC cell line EC9706 cells were randomly divided into untreated (with no transfection), control siRNA (transfected with control siRNA) and HDAC6 siRNA (transfected with HDAC6 small interfering RNA) groups. Effects of HDAC6 siRNA interference on expression of HDAC6 mRNA and protein in EC9706 cells were investigated by semi-quantitative RT-PCR, Western blotting and immunocytochemistry methods. Effects of down-regulation of HDAC6 expression on cell proliferation, cell cycle, and cell migration were studied using a CCK-8 kit, flow cytometry and Boyden chambers, respectively. Changes of mRNA and protein expression levels of cell cycle related factor (p21) and cell migration related factor (E-cadherin) were investigated by semi-quantitative RT-PCR and Western blotting methods. Results: After transfection of HDAC6 siRNA, the expression of HDAC6 mRNA and protein in EC9706 cells was significantly downregulated. In the HDAC6 siRNA group, cell proliferation was markedly inhibited, the percentage of cells in G0/G1 phase evidently increased and the percentage of cells in S phase decreased, and the number of migrating cells significantly and obviously decreased. The mRNA and protein expression levels of p21 and E-cadherin in the HDAC6 siRNA group were significantly higher than those in the untreated group and the control siRNA group, respectively. Conclusions: HDAC6 siRNA can effectively downregulate the expression of HDAC6 mRNA and protein in EC9706 cells. Down-regulation of HDAC6 expression can obviously inhibit cell proliferation, arrest cell cycling in the G0/G1 phase and reduce cell migration. The latter two functions may be closely related with the elevation of mRNA and protein expression of p21 and E-cadherin.

Effects of PTTG Down-regulation on Proliferation and Metastasis of the SCL-1 Cutaneous Squamous Cell Carcinoma Cell Line

  • Xia, Yong-Hua;Li, Min;Fu, Dan-Dan;Xu, Su-Ling;Li, Zhan-Guo;Liu, Dong;Tian, Zhong-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6245-6248
    • /
    • 2013
  • Aims: To study effects of down-regulation of pituitary tumor-transforming gene (PTTG) on proliferation and metastasis ability of the SCL-1 cutaneous squamous cell carcinoma (CSCC) cell line and explore related mechanisms. Methods: SCL-1 cells were divided into 3 groups (untreated, siRNA control and PTTG siRNA). Cell proliferation assays were performed using a CCK-8 kit and proliferation and metastasis ability were analyzed using Boyden chambers. In addition, expression of MMP-2 and MMP-9 was detected by r-time qPCR and Western blotting. Results: Down-regulation of PTTG could markedly inhibit cell proliferation in SCL-1 cells, compared to untreated and control siRNA groups (P < 0.05). Real-time qPCR demonstrated that expression levels of PTTG, MMP-2 and MMP-9 in the PTTG siRNA group were 0.8%, 23.2% and 21.3% of untreated levels. Western blotting revealed that expression of PTTG, MMP-2 and MMP-9 proteins in the PTTG siRNA group was obviously down-regulated. The numbers of migrating cells ($51.38{\pm}4.71$) in the PTTG siRNA group was obviously lower than that in untreated group ($131.33{\pm}6.12$) and the control siRNA group ($127.72{\pm}5.20$) (P < 0.05), suggesting that decrease of proliferation and metastasis ability mediated by PTTG knock-down may be closely correlated with down-regulation of MMP-2 and MMP-9 expression. Conclusion: Inhibition of PTTG expression may be a new target for therapy of CSCC.

RNA-Protein Interactions and Protein-Protein Interactions during Regulation of Eukaryotic Gene Expression

  • Varani, Luca;Ramos, Andres;Cole, Pual T.;Neuhaus, David;Varani, Gabriele
    • 한국자기공명학회논문지
    • /
    • 제2권2호
    • /
    • pp.152-157
    • /
    • 1998
  • The diversity of RNA functions ranges from storage and propagation of genetic information to enzymatic activity during RNA processing and protein synthesis. This diversity of functions requires an equally diverse arrays of structures, and, very often, the formation of functional RNA-protein complexes. Recognition of specific RNA signals by RNA-binding proteins is central to all aspects of post-transcriptional regulation of gene expression. We will describe how NMR is being used to understand at the atomic level how these important biological processes occur.

  • PDF

MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis

  • Yan, Sheng;Yim, Lok Yan;Lu, Liwei;Lau, Chak Sing;Chan, Vera Sau-Fong
    • IMMUNE NETWORK
    • /
    • 제14권3호
    • /
    • pp.138-148
    • /
    • 2014
  • MicroRNAs (miRNAs) are endogenous small RNA molecules best known for their function in post-transcriptional gene regulation. Immunologically, miRNA regulates the differentiation and function of immune cells and its malfunction contributes to the development of various autoimmune diseases including systemic lupus erythematosus (SLE). Over the last decade, accumulating researches provide evidence for the connection between dysregulated miRNA network and autoimmunity. Interruption of miRNA biogenesis machinery contributes to the abnormal T and B cell development and particularly a reduced suppressive function of regulatory T cells, leading to systemic autoimmune diseases. Additionally, multiple factors under autoimmune conditions interfere with miRNA generation via key miRNA processing enzymes, thus further skewing the miRNA expression profile. Indeed, several independent miRNA profiling studies reported significant differences between SLE patients and healthy controls. Despite the lack of a consistent expression pattern on individual dysregulated miRNAs in SLE among these studies, the aberrant expression of distinct groups of miRNAs causes overlapping functional outcomes including perturbed type I interferon signalling cascade, DNA hypomethylation and hyperactivation of T and B cells. The impact of specific miRNA-mediated regulation on function of major immune cells in lupus is also discussed. Although research on the clinical application of miRNAs is still immature, through an integrated approach with advances in next generation sequencing, novel tools in bioinformatics database analysis and new in vitro and in vivo models for functional evaluation, the diagnostic and therapeutic potentials of miRNAs may bring to fruition in the future.

Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction

  • Jeewan Chun;Ji-Hoi Moon;Kyu Hwan Kwack;Eun-Young Jang;Saebyeol Lee;Hak Kyun Kim;Jae-Hyung Lee
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.232-237
    • /
    • 2024
  • This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation.

RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

  • Bish, Rebecca;Vogel, Christine
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.357-364
    • /
    • 2014
  • Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

Altered expression of norepinephrine transporter and norepinephrine in human placenta cause pre-eclampsia through regulated trophoblast invasion

  • Na, Kyu-Hwan;Choi, Jong Ho;Kim, Chun-Hyung;Kim, Kwang-Soo;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제40권1호
    • /
    • pp.12-22
    • /
    • 2013
  • Objective: We investigated the norepinephrine transporter (NET) expression in normal and pre-eclamptic placentas and analyzed the invasion activity of trophoblastic cells based on norepinephrine (NE)-NET regulation. Methods: NET and NE expression levels were examined by western blot and enzyme-linked immunosorbent assay, respectively. Trophoblast invasion activity, depending on NE-NET regulation, was determined by NET-small interfering RNA (siRNA) and NET transfection into the human extravillous trophoblast cells with or without NE treatment and invasion rates were analyzed by zymography and an invasion assay. Results: NET mRNA was expressed at a low level in pre-eclamptic placentas compared with normal placentas and NE concentration in maternal plasma increased significantly in pre-eclamptic women compared to normal pregnant women (p<0.05). NET gene upregulation and NE treatment stimulated trophoblast cell invasion up to 2.5-fold (p<0.05) by stimulating matrix metalloproteinase-9 activity via the phosphoinositol-3-kinase/AKT signaling pathway, whereas NET-siRNA with NE treatment reduced invasion rates. Conclusion: NET expression is reduced by inadequate regulation of NE levels during placental development. This suggests that a complementary balance between NET and NE regulates trophoblast cell invasion activities during placental development.

Differentially Expressed Genes by Inhibition of C-terminal Src Kinase by siRNA in Human Vascular Smooth Muscle Cells and Their Association with Blood Pressure

  • Hong, Kyung-Won;Shin, Young-Bin;Kim, Koan-Hoi;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.102-113
    • /
    • 2011
  • C-terminal SRC kinase (CSK) is a ubiquitously expressed, cytosolic enzyme that phosphorylates and inactivates several SRC family protein tyrosine kinases. Recent genomewide association studies have implicated CSK in the regulation of blood pressure. The current study aim is to determine the blood pressure association of the genes regulated by CSK down-regulation. The CSK mRNA expression was downregulated in vascular smooth muscle cells using small interfering RNA (siRNA). CSK mRNA levels fell by 90% in cells that were treated with CSK siRNA; the RNA from these cells was examined by microarray using the Illumina HumanRef-8 v3 platform, which comprises 24,526 reference mRNA probes. On treatment with CSK siRNA, 19 genes were downregulated by more than 2-fold and 13 genes were upregulated by more than 2-fold. Three (CANX, SLC30A7, and HMOX1) of them revealed more than 3 fold differential expression. Interestingly, the HMOX1 SNPs were associated with diastolic blood pressure in the 7551 Koreans using Korea Association REsource data, and the result was supported by the other reports that HMOX1 linked to blood vessel maintenance. Among the remaining 29 differentially expressed genes, seven (SSBP1, CDH2, YWHAE, ME2, PFTK1, G3BP2, and TUFT1) revealed association with both systolic and diastolic blood pressures. The CDH2 gene was linked to blood pressures. Conclusively, we identified 32 differentially expressed genes which were regulated by CSK reduction, and two (HOMX1 and CDH2) of them might influence the blood pressure regulation through CSK pathway.