Browse > Article
http://dx.doi.org/10.4110/in.2014.14.3.138

MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis  

Yan, Sheng (Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Yim, Lok Yan (Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Lu, Liwei (Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Lau, Chak Sing (Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Chan, Vera Sau-Fong (Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong)
Publication Information
IMMUNE NETWORK / v.14, no.3, 2014 , pp. 138-148 More about this Journal
Abstract
MicroRNAs (miRNAs) are endogenous small RNA molecules best known for their function in post-transcriptional gene regulation. Immunologically, miRNA regulates the differentiation and function of immune cells and its malfunction contributes to the development of various autoimmune diseases including systemic lupus erythematosus (SLE). Over the last decade, accumulating researches provide evidence for the connection between dysregulated miRNA network and autoimmunity. Interruption of miRNA biogenesis machinery contributes to the abnormal T and B cell development and particularly a reduced suppressive function of regulatory T cells, leading to systemic autoimmune diseases. Additionally, multiple factors under autoimmune conditions interfere with miRNA generation via key miRNA processing enzymes, thus further skewing the miRNA expression profile. Indeed, several independent miRNA profiling studies reported significant differences between SLE patients and healthy controls. Despite the lack of a consistent expression pattern on individual dysregulated miRNAs in SLE among these studies, the aberrant expression of distinct groups of miRNAs causes overlapping functional outcomes including perturbed type I interferon signalling cascade, DNA hypomethylation and hyperactivation of T and B cells. The impact of specific miRNA-mediated regulation on function of major immune cells in lupus is also discussed. Although research on the clinical application of miRNAs is still immature, through an integrated approach with advances in next generation sequencing, novel tools in bioinformatics database analysis and new in vitro and in vivo models for functional evaluation, the diagnostic and therapeutic potentials of miRNAs may bring to fruition in the future.
Keywords
MicroRNAs; Systemic Lupus Erythematosus; Autoimmunity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, H., W. Peng, X. Ouyang, W. Li, and Y. Dai. 2012. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 160: 198-206.   DOI   ScienceOn
2 Fontenot, J. D., M. A. Gavin, and A. Y. Rudensky. 2003. Foxp3 programs the development and function of $CD4^+\;CD25^+$ regulatory T cells. Nat. Immunol. 4: 330-336.   DOI   ScienceOn
3 Divekar, A. A., S. Dubey, P. R. Gangalum, and R. R. Singh. 2011. Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J. Immunol. 186: 924-930.   DOI   ScienceOn
4 Xu, S., K. Guo, Q. Zeng, J. Huo, and K. P. Lam. 2012. The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood 119: 767-776.   DOI   ScienceOn
5 Ademokun, A. and M. Turner. 2008. Regulation of B-cell differentiation by microRNAs and RNA-binding proteins. Biochem. Soc. Trans. 36: 1191-1193.   DOI   ScienceOn
6 Koralov, S. B., S. A. Muljo, G. R. Galler, A. Krek, T. Chakraborty, C. Kanellopoulou, K. Jensen, B. S. Cobb, M. Merkenschlager, N. Rajewsky, and K. Rajewsky. 2008. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132: 860-874.   DOI   ScienceOn
7 Wiesen, J. L., and T. B. Tomasi. 2009. Dicer is regulated by cellular stresses and interferons. Mol. Immunol. 46: 1222-1228.   DOI   ScienceOn
8 Satoh, M., J. Y. F. Chan, A. Ceribelli, M. Vazquez del-Mercado, and E. K. Chan. 2013. Autoantibodies to Argonaute 2 (Su antigen). Adv. Exp. Med. Biol. 768: 45-59.   DOI   ScienceOn
9 Jakymiw, A., K. Ikeda, M. J. Fritzler, W. H. Reeves, M. Satoh, and E. K. Chan. 2006. Autoimmune targeting of key components of RNA interference. Arthritis Res. Ther. 8: R87.   DOI   ScienceOn
10 Lu, J., G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz, and T. R. Golub. 2005. MicroRNA expression profiles classify human cancers. Nature 435: 834-838.   DOI   ScienceOn
11 Zhu, S., W. Pan, and Y. Qian. 2013. MicroRNA in immunity and autoimmunity. J. Mol. Med. (Berl). 91: 1039-1050.   DOI   ScienceOn
12 Miao, C. G., Y. Y. Yang, X. He, C. Huang, Y. Huang, L. Zhang, X. W. Lv, Y. Jin, and J. Li. 2013. The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus. Cell. Signal. 25: 1828-1836.   DOI   ScienceOn
13 Muljo, S. A., K. M. Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao, and K. Rajewsky. 2005. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202: 261-269.   DOI   ScienceOn
14 Gregory, R. I., K. P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj, N. Cooch, and R. Shiekhattar. 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235-240.   DOI   ScienceOn
15 Lund, E., S. Guttinger, A. Calado, J. E. Dahlberg, and U. Kutay. 2004. Nuclear export of microRNA precursors. Science 303: 95-98.   DOI   ScienceOn
16 Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.   DOI   ScienceOn
17 Chong, M. M., J. P. Rasmussen, A. Y. Rundensky, and D. R. Littman. 2008. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205: 2005-2017.   DOI   ScienceOn
18 Cobb, B. S., T. B. Nesterova, E. Thompson, A. Hertweck, E. O'Connor, J. Godwin, C. B. Wilson, N. Brockdorff, A. G. Fisher, S. T. Smale, and M. Merkenschlager. 2005. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201: 1367-1373.   DOI   ScienceOn
19 Liston, A., L. F. Lu, D. O'Carroll, A. Tarakhovsky, and A. Y. Rudensky. 2008. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205: 1993-2004.   DOI   ScienceOn
20 Bartel, D. P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.   DOI   ScienceOn
21 Chen, C. Z., I. Li, H. F. Lodish, and D. P. Bartel. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83-86.   DOI   ScienceOn
22 Carrington, J. C. and V. Ambros. 2003. Role of microRNAs in plant and animal development. Science 301: 336-338.   DOI   ScienceOn
23 Baltimore, D., M. P. Boldin, R. M. O'Connell, D. S. Rao, and K. D. Taganov. 2008. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol. 9: 839-845.   DOI   ScienceOn
24 Carthew, R. W. and E. J. Sontheimer. 2009. Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642-655.   DOI   ScienceOn
25 O'Connell, R. M., D. S. Rao, A. A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10: 111-122.   DOI   ScienceOn
26 Asirvatham, A. J., C. J. Gregorie, Z. Hu, W. J. Magner, and T. B. Tomasi. 2008. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol. Immunol. 45: 1995-2006.   DOI   ScienceOn
27 Mak, A., D. A. Isenberg, and C. S. Lau. 2013. Global trends, potential mechanisms and early detection of organ damage in SLE. Nat. Rev. Rheumatol. 9: 301-310.
28 Kim, V. N., J. Han, and M. C. Siomi. 2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10: 126-139.   DOI   ScienceOn
29 Tsokos, G. C. 2011. Systemic lupus erythematosus. N. Engl. J. Med. 365: 2110-2121.   DOI   ScienceOn
30 Luo, X., L. M. Tsai, N. Shen, and D. Yu. 2010. Evidence for microRNA-mediated regulation in rheumatic diseases. Ann. Rheum. Dis. 69 Suppl 1: i30-36.   DOI   ScienceOn
31 Bennett, L., A. K. Palucka, E. Arce, V. Cantrell, J. Borvak, J. Banchereau, and V. Pascual. 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197: 711-723.   DOI   ScienceOn
32 Obermoser, G. and V. Pascual. 2010. The interferon-alpha signature of systemic lupus erythematosus. Lupus 19: 1012-1019.   DOI   ScienceOn
33 Luo, X., L. Zhang, M. Li, W. Zhang, X. Leng, F. Zhang, Y. Zhao, and X. Zeng. 2013. The role of miR-125b in T lymphocytes in the pathogenesis of systemic lupus erythematosus. Clin. Exp. Rheumatol. 31: 263-271.
34 Lu, M. C., N. S. Lai, H. C. Chen, H. C. Yu, K. Y. Huang, C. H. Tung, H. B. Huang, and C. L. Yu. 2013. Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin. Exp. Immunol. 171: 91-99.   DOI   ScienceOn
35 Inui, M., G. Martello, and S. Piccolo. 2010. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11: 252-263.   DOI   ScienceOn
36 Zhao, S., Y. Wang, Y. Liang, M. Zhao, H. Long, S. Ding, H. Yin, and Q. Lu. 2011. MicroRNA-126 regulates DNA methylation in $CD4^+$ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 63: 1376-1386.   DOI   ScienceOn
37 Stagakis, E., G. Bertsias, P. Verginis, M. Nakou, M. Hatziapostolou, H. Kritikos, D. Iliopoulos, and D. T. Boumpas. 2011. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann. Rheum. Dis. 70: 1496-1506.   DOI   ScienceOn
38 Pan, W., S. Zhu, M. Yuan, H. Cui, L. Wang, X. Luo, J. Li, H. Zhou, Y. Tang, and N. Shen. 2010. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus $CD4^+$ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184: 6773-6781.   DOI
39 Alcocer-Varela, J. and D. Alarcon-Segovia. 1982. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J. Clin. Invest. 69: 1388-1392.   DOI
40 Boyman, O. and J. Sprent. 2012. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12: 180-190.
41 Fan, W., D. Liang, Y. Tang, B. Qu, H. Cui, X. Luo, X. Huang, S. Chen, B. W. Higgs, B. Jallal, Y. Yao, J. B. Harley, and N. Shen. 2012. Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus. Arthritis Rheum. 64: 3715-3725.   DOI   ScienceOn
42 Carlsen, A. L., A. J. Schetter, C. T. Nielsen, C. Lood, S. Knudsen, A. Voss, C. C. Harris, T. Hellmark, M. Segelmark, S. Jacobsen, A. A. Bengtsson, and N. H. Heegaard. 2013. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 65: 1324-1334.   DOI   ScienceOn
43 Zhang, Y., M. Zhao, A. H. Sawalha, B. Richardson, and Q. Lu. 2013. Impaired DNA methylation and its mechanisms in $CD4^+T$ cells of systemic lupus erythematosus. J. Autoimmun. 41: 92-99.   DOI   ScienceOn
44 Tang, Y., X. Luo, H. Cui, X. Ni, M. Yuan, Y. Guo, X. Huang, H. Zhou, N. de Vries, P. P. Tak, S. Chen, and N. Shen. 2009. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60: 1065-1075.   DOI   ScienceOn
45 Te, J. L., I. M. Dozmorov, J. M. Guthridge, K. L. Nguyen, J. W. Cavett, J. A. Kelly, G. R. Bruner, J. B. Harley, and J. O. Ojwang. 2010. Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5: e10344.   DOI   ScienceOn
46 Baechler, E. C., F. M. Batliwalla, G. Karypis, P. M. Gaffney, W. A. Ortmann, K. J. Espe, K. B. Shark, W. J. Grande, K. M. Hughes, V. Kapur, P. K. Gregersen, and T. W. Behrens. 2003. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100: 2610-2615.   DOI   ScienceOn
47 Qin, H., X. Zhu, J. Liang, J. Wu, Y. Yang, S. Wang, W. Shi, and J. Xu. 2013. MicroRNA-29b contributes to DNA hypomethylation of $CD4^+$ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J. Dermatol. Sci. 69: 61-67.   DOI   ScienceOn
48 Dai, Y., Y. S. Huang, M. Tang, T. Y. Lv, C. X. Hu, Y. H. Tan, Z. M. Xu, and Y. B. Yin. 2007. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16: 939-946.   DOI   ScienceOn
49 Sheedy, F. J., E. Palsson-McDermott, E. J. Hennessy, C. Martin, J. J. O'Leary, Q. Ruan, D. S. Johnson, Y. Chen, and L. A. O'Neill. 2010. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 11: 141-147.   DOI   ScienceOn
50 Ding, S., Y. Liang, M. Zhao, G. Liang, H. Long, S. Zhao, Y. Wang, H. Yin, P. Zhang, Q. Zhang, and Q. Lu. 2012. Decreased microRNA-142-3p/5p expression causes $CD4^+$ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 64: 2953-2963.   DOI   ScienceOn
51 Diaz, M. 2013. The role of activation-induced deaminase in lupus nephritis. Autoimmunity 46: 115-120.   DOI   ScienceOn
52 Cannons, J. L., H. Qi, K. T. Lu, M. Dutta, J. Gomez-Rodriguez, J. Cheng, E. K. Wakeland, R. N. Germain, and P. L. Schwartzberg. 2010. Optimal germinal center responses require a multistage T cell: B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32: 253-265.   DOI   ScienceOn
53 Komori, H., H. Furukawa, S. Mori, M. R. Ito, M. Terada, M. C. Zhang, N. Ishii, N. Sakuma, M. Nose, and M. Ono. 2006. A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. J. Immunol. 176: 395-400.   DOI
54 Zan, H. and P. Casali. 2013. Regulation of Aicda expression and AID activity. Autoimmunity 46: 83-101.   DOI   ScienceOn
55 Jiang, C., J. Foley, N. Clayton, G. Kissling, M. Jokinen, R. Herbert, and M. Diaz. 2007. Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol. 178: 7422-7431.   DOI
56 Dorsett, Y., K. M. McBride, M. Jankovic, A. Gazumyan, T. H. Thai, D. F. Robbiani, M. Di Virgilio, B. Reina San-Martin, G. Heidkamp, T. A. Schwickert, T. Eisenreich, K. Rajewsky, and M. C. Nussenzweig. 2008. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28: 630-638.   DOI   ScienceOn
57 Xue, F., H. Li, J. Zhang, J. Lu, Y. Xia, and Q. Xia. 2013. miR-31 regulates interleukin 2 and kinase suppressor of ras 2 during T cell activation. Genes Immun. 14: 127-131.   DOI   ScienceOn
58 Helms, W. S., J. L. Jeffrey, D. A. Holmes, M. B. Townsend, N. A. Clipstone, and L. Su. 2007. Modulation of NFAT-dependent gene expression by the RhoA signaling pathway in T cells. J. Leukoc. Biol. 82: 361-369.   DOI   ScienceOn
59 Teng, G., P. Hakimpour, P. Landgraf, A. Rice, T. Tuschl, R. Casellas, and F. N. Papavasiliou. 2008. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28: 621-629.   DOI   ScienceOn
60 Richardson, B., L. Scheinbart, J. Strahler, L. Gross, S. Hanash, and M. Johnson. 1990. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33: 1665-1673.   DOI   ScienceOn
61 Jin, O., S. Kavikondala, M. Y. Mok, L. Sun, J. Gu, R. Fu, A. Chan, J. Yeung, Y. Nie, and C. S. Lau. 2010. Abnormalities in circulating plasmacytoid dendritic cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 12: R137.   DOI
62 Rouas, R., H. Fayyad-Kazan, N. El Zein, P. Lewalle, F. Rothe, A. Simion, H. Akl, M. Mourtada, M. El Rifai, A. Burny, P. Romero, P. Martiat, and B. Badran. 2009. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur. J. Immunol. 39: 1608-1618.   DOI   ScienceOn
63 Zhao, X., Y. Tang, B. Qu, H. Cui, S. Wang, L. Wang, X. Luo, X. Huang, J. Li, S. Chen, and N. Shen. 2010. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 62: 3425-3435.   DOI   ScienceOn
64 Lu, M. M., J. Wang, H. F. Pan, G. M. Chen, J. Li, H. Cen, C. C. Feng, and D. Q. Ye. 2012. Increased serum RANTES in patients with systemic lupus erythematosus. Rheumatol. Int. 32: 1231-1233.   DOI   ScienceOn
65 Song, A., Y. F. Chen, K. Thamatrakoln, T. A. Storm, and A. M. Krensky. 1999. RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity 10: 93-103.   DOI   ScienceOn
66 Liu, Y., J. Dong, R. Mu, Y. Gao, X. Tan, Y. Li, Z. Li, and G. Yang. 2013. MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum. 65: 1603-1611.   DOI   ScienceOn
67 Liossis, S. N., E. E. Solomou, M. A. Dimopoulos, P. Panayiotidis, M. M. Mavrikakis, and P. P. Sfikakis. 2001. B-cell kinase lyn deficiency in patients with systemic lupus erythematosus. J. Investig. Med. 49: 157-165.   DOI
68 Flores-Borja, F., P. S. Kabouridis, E. C. Jury, D. A. Isenberg, and R. A. Mageed. 2005. Decreased Lyn expression and translocation to lipid raft signaling domains in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum. 52: 3955-3965.   DOI   ScienceOn
69 Luo, X., W. Yang, D. Q. Ye, H. Cui, Y. Zhang, N. Hirankarn, X. Qian, Y. Tang, Y. L. Lau, N. de Vries, P. P. Tak, B. P. Tsao, and N. Shen. 2011. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7: e1002128.   DOI
70 Hou, J., P. Wang, L. Lin, X. Liu, F. Ma, H. An, Z. Wang, and X. Cao. 2009. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J. Immunol. 183: 2150-2158.   DOI   ScienceOn
71 Karrich, J. J., L. C. Jachimowski, M. Libouban, A. Iyer, K. Brandwijk, E. W. Taanman-Kueter, M. Nagasawa, E. C. de Jong, C. H. Uittenbogaart, and B. Blom. 2013. MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122: 3001-3009.   DOI   ScienceOn
72 Chan, V. S., Y. J. Nie, N. Shen, S. Yan, M. Y. Mok, and C. S. Lau. 2012. Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun. Rev. 11: 890-897.   DOI   ScienceOn
73 Jin, O., S. Kavikondala, L. Sun, R. Fu, M. Y. Mok, A. Chan, J. Yeung, and C. S. Lau. 2008. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus 17: 654-662.   DOI
74 Keller, A., P. Leidinger, A. Bauer, A. Elsharawy, J. Haas, C. Backes, A. Wendschlag, N. Giese, C. Tjaden, K. Ott, J. Werner, T. Hackert, K. Ruprecht, H. Huwer, J. Huebers, G. Jacobs, P. Rosenstiel, H. Dommisch, A. Schaefer, J. Muller-Quernheim, B. Wullich, B. Keck, N. Graf, J. Reichrath, B. Vogel, A. Nebel, S. U. Jager, P. Staehler, I. Amarantos, V. Boisguerin, C. Staehler, M. Beier, M. Scheffler, M. W. Buchler, J. Wischhusen, S. F. M. Haeusler, J. Dietl, S. Hofmann, H. P. Lenhof, S. Schreiber, H. A. Katus, W. Rottbauer, B. Meder, J. D. Hoheisel, A. Franke, and E. Meese. 2011. Toward the blood-borne miRNome of human diseases. Nat. Methods 8: 841-843.   DOI   ScienceOn
75 Su, X., C. Qian, Q. Zhang, J. Hou, Y. Gu, Y. Han, Y. Chen, M. Jiang, and X. Cao. 2013. miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1. Nat. Commun. 4: 2903.
76 Yuan, Y., S. Kasar, C. Underbayev, D. Vollenweider, E. Salerno, S. V Kotenko, and E. Raveche. 2012. Role of microRNA-15a in autoantibody production in interferon- augmented murine model of lupus. Mol. Immunol. 52: 61-70.   DOI   ScienceOn
77 De Yebenes, V. G., L. Belver, D. G. Pisano, S. Gonzalez, A. Villasante, C. Croce, L. He, and A. R. Ramiro. 2008. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205: 2199-2206.   DOI   ScienceOn
78 Dai, R., Y. Zhang, D. Khan, B. Heid, D. Caudell, O. Crasta, and S. A. Ahmed. 2010. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 5: e14302.   DOI   ScienceOn
79 Thai, T. H., H. C. Patterson, D. H. Pham, K. Kis-Toth, D. A. Kaminski, and G. C. Tsokos. 2013. Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Fas(lpr) mouse. Proc. Natl. Acad. Sci. USA 110: 20194-20199.   DOI   ScienceOn
80 Pan, Y., T. Jia, Y. Zhang, K. Zhang, R. Zhang, J. Li, and L. Wang. 2012. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int. J. Nanomedicine 7: 5957-5967.
81 Garchow, B. G., O. Bartulos Encinas, Y. T. Leung, P. Y. Tsao, R. A. Eisenberg, R. Caricchio, S. Obad, A. Petri, S. Kauppinen, and M. Kiriakidou. 2011. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol. Med. 3: 605-615.   DOI
82 Charrier, E., P. Cordeiro, M. Cordeau, R. Dardari, A. Michaud, M. Harnois, N. Merindol, S. Herblot, and M. Duval. 2012. Post-transcriptional down-regulation of Toll-like receptor signaling pathway in umbilical cord blood plasmacytoid dendritic cells. Cell. Immunol. 276: 114-121.   DOI   ScienceOn
83 Zhou, X., L. T. Jeker, B. T. Fife, S. Zhu, M. S. Anderson, M. T. McManus, and J. A. Bluestone. 2008. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205: 1983-1991.   DOI   ScienceOn
84 Rahman, A., and D. A. Isenberg. 2008. Systemic lupus erythematosus. N. Engl. J. Med. 358: 929-939.   DOI   ScienceOn
85 Zhu, X., J. Liang, F. Li, Y. Yang, L. Xiang, and J. Xu. 2011. Analysis of associations between the patterns of global DNA hypomethylation and expression of DNA methyltransferase in patients with systemic lupus erythematosus. Int. J. Dermatol. 50: 697-704.   DOI   ScienceOn
86 Belver, L., V. G. de Yebenes, and A. R. Ramiro. 2010. MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33: 713-722.   DOI   ScienceOn
87 Boldin, M. P., K. D. Taganov, D. S. Rao, L. Yang, J. L. Zhao, M. Kalwani, Y. Garcia-Flores, M. Luong, A. Devrekanli, J. Xu, G. Sun, J. Tay, P. S. Linsley, and D. Baltimore. 2011. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208: 1189-1201.   DOI   ScienceOn