• 제목/요약/키워드: RNA metabolism

검색결과 621건 처리시간 0.02초

Daidzein Modulations of Apolipoprotein B and Fatty Acid Synthase mRNA Expression in Chick Liver Vary Depending on Dietary Protein Levels

  • Choi, Jinho;Song, Jungmin;Choi, Yeon-Mi;Jang, Dong-Ju;Kim, Eunmi;Kim, Inho;Chee, Kew-Mahn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권2호
    • /
    • pp.236-244
    • /
    • 2006
  • This study was designed to determine the effects of daidzein (DE) on hepatic lipid metabolism in chicks fed with low protein (LP) diet based on casein. In experiment 1, the male chicks were fed with one of the three levels of dietary protein containing 10.95%, 21.9% and 43.8% protein content for 2 days. In experiment 2, the chicks were fed one of the three levels of protein with or without DE at 1,000 mg/kg diet for 2 days. Experiment 3 was conducted to compare DE (LP+DE) with estradiol (LP+E2) in chicks fed with LP diet for 7 days. Plasma lipid profiles, hepatic lipid profiles, activities of hepatic malic enzyme and isocitrate dehydrogenase (ICDH) were measured. Transcriptions of hepatic fatty acid synthase, apolipoprotein-B (APO-B), and fructose bisphosphatase mRNA were measured by RT-PCR. Increasing dietary protein levels markedly decreased the concentrations of plasma triglycerides, hepatic total lipids, hepatic TG, and the mRNA transcriptions while the increased dietary protein levels increased hepatic ICDH activities in experiment 1. In experiment 2, the effects of dietary protein levels on blood and hepatic lipid content were more prominent than those of the additional DE. Interestingly, plasma TG levels were affected by DE supplementation (p<0.05). In experiment 3, DE inhibited APO-B mRNA expressions and stimulated the accumulation of lipid in the liver through mechanisms different from E2. In this study, we demonstrate that DE has beneficial effects on blood lipid profiles, but that it inhibits APO-B mRNA transcription and aggravates the fatty liver induced by LP diet in chicks.

M6A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation

  • Kwon, Jeongwoo;Jo, Yu-Jin;Yoon, Seung-Bin;You, Hyeong-ju;Youn, Changsic;Kim, Yejin;Lee, Jiin;Kim, Nam-Hyung;Kim, Ji-Su
    • 한국동물생명공학회지
    • /
    • 제37권2호
    • /
    • pp.121-129
    • /
    • 2022
  • Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an N6-methyladenosine (m6A) RNA modification regulator and a key determinant of prem-RNA processing, mRNA metabolism and transportation in cells. Currently, m6A reader proteins such as hnRNPA2/B1 and YTHDF2 has functional roles in mice embryo. However, the role of hnRNPA2/B1 in porcine embryogenic development are unclear. Here, we investigated the developmental competence and mRNA expression levels in porcine parthenogenetic embryos after hnRNPA2/B1 knock-down. HhnRNPA2/B1 was localized in the nucleus during subsequent embryonic development since zygote stage. After hnRNPA2/B1 knock-down using double stranded RNA injection, blastocyst formation rate decreased than that in the control group. Moreover, hnRNPA2/B1 knock-down embryos show developmental delay after compaction. In blastocyste stage, total cell number was decreased. Interestingly, gene expression patterns revealed that transcription of Pou5f1, Sox2, TRFP2C, Cdx2 and PARD6B decreased without changing the junction protein, ZO1, OCLN, and CDH1. Thus, hnRNPA2/B1 is necessary for porcine early embryo development by regulating gene expression through epigenetic RNA modification.

인간 HepG2 Cell에서 항산화 효소의 mRNA 발현에 대한 잔대 에틸아세테이트 추출물 효과 (Effects of Adenophora triphylla Ethylacetate Extract on mRNA Levels of Antioxidant Enzymes in Human HepG2 Cells)

  • 최현진;김수현;오현택;정미자;최승필;함승시
    • 한국식품영양과학회지
    • /
    • 제37권10호
    • /
    • pp.1238-1243
    • /
    • 2008
  • 잔대 뿌리는 우리나라에서 예로부터 민간약으로 이용되어 오고 있다. 본 연구에서는 인간 간세포인 HepG2에 잔대 뿌리의 에틸아세테이트 추출물을 처리했을 때 sodium nitroprusside(SNP)에 의해 유도된 세포 독성 및 항산화 유전자 발현에 미치는 영향력을 알아보았다. 먼저, 잔대 에틸아세테이트 추출물이 NO에 의해 유도된 세포 사멸을 저해할 수 있는지를 알아보기 위하여 HepG2 세포에 잔대 에틸아세테이트 추출물(각각 50과 100 $\mu$g/mL)을 24시간 먼저 처리한 후 세포내에서 NO을 생성시킬 수 있는 0.5 mM SNP를 처리하였다. NO에 의한 세포독성이 에틸아세테이트 추출물에 의해 저해되었다는 것을 mitochondrial dehydrogenase 활성을 알아보는 MTT assay를 실시하여 알아보았다. 더하여 우리는 잔대 에틸아세테이트 추출물이 세포내 항산화 방어 시스템인 Cu,Zn superoxide dismutase(SOD 1), Mn SOD(SOD 2), glutathione peroxidase(GPx), catalase와 glutathione metabolism과 관련되어져 있는 glutathione reductase(GR), $\gamma$-glutamyl-cystein synthetase(GCS), glutathione-S-transferase(GST), $\gamma$-glutamyltranspeptidase($\gamma$-GT), glucose-6-phosphate dehydrogenase(G6PD)의 mRNA 발현에 미치는 영향을 RT-PCR로 알아보았다. CAT, GCS 그리고 G6PD mRNA 수준이 잔대 에틸아세테이트 추출물 처리 후 증가하였으나, SOD 1, SOD 2, GPx, GST 그리고 $\gamma$-GT mRNA 수준은 변화지 않았다. 따라서 잔대 에틸아세테이트 추출물이 간접적 항산화 효과가 있고, 이들 효과는 아마 CAT, GCS, GR 그리고 G6PD 유전자 발현 증가에 의한 것이라고 추정되었다.

Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

  • Lu, Ping;Jiang, Ke;Hao, Ya-Qiao;Chu, Wan-Ying;Xu, Yu-Dong;Yang, Jia-Yao;Chen, Jia-Le;Zeng, Guo-Hong;Gu, Zhou-Hang;Zhao, Hong-Xin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1231-1240
    • /
    • 2021
  • Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.

조기 이유한 흰쥐에서 유단백질의 섭취수준과 조성비가 기관성장과 단백질대사에 미치는 영향 (Effects of Milk Protein levels and Casein/Whey Ratios on Organ Growth and Protein Metabolism in Early Weaned Rats)

  • 박미나
    • Journal of Nutrition and Health
    • /
    • 제30권1호
    • /
    • pp.3-11
    • /
    • 1997
  • This study was conducted to investigate the effects of protein levels and casein/whey ratios on organ growth and protein metabolism in early weaned rats. Premature rats weaned by the 17th day were fed six semipurified synthetic, isocaloric and gel diets that contained three levels (low, medium and high) and two different combinations(casein/whey ; 80 : 20 or 20 : 80) of milk protein for 8 days. On the 25th day postpartum, frest weigth and DNA, RNA and milk protein contents in brain, liver, kidney and muscle were determined to ascertain organ and cellular growth. Futher, with a view to ascertain protein metabolism and renal functions, serum total protein, $\alpha$-amino N, urea N, and creatinine and creatinine and urinary urea N, creatinine and hydroxproline were determined. Total DNA contents of brain, liver and kidney, which may represent as an index of cell numbers in those organs were significantly decreased in the rats fed diets containing low level protein regardless of casein/whey ratio. However, as fat as the rats fed high protein diets were concerned, their fresh weight, protein contents and GFR of kidney were significantly increased. Furthermore, nitrogen components, $\alpha$-amino N, urea N and creatinie in serum and urine were also increassed. Another observation was that high casein/whey ratio significantly facilitated accumulation of porteins in muscle and kidney and urinary hydorxyproline excretion, not affecting the DNA content of those organs. This study showed that low(8%) or high(32%) contents of protein had less desirable effects either on protein metabolism or on organ cellular growth in prematurely weaned rats, whereas there were no effects on general growth and bone strength.

  • PDF

고려인삼(Panax ginseng C.A, Meyer)의 잎 ESTs database에서 Energy 대사 관련 유전자 분석 (Gene Analysis Related Energy Metabolism of Leaf Expressed Sequence Tags Database of Korean Ginseng (Panax ginseng C.A. Meyer))

  • 이종일;윤재호;송원섭;이범수;인준교;김은정;양덕춘
    • 한국자원식물학회지
    • /
    • 제19권1호
    • /
    • pp.174-179
    • /
    • 2006
  • 본 연구에서는 인삼 잎으로부터 정제한 mRNA를 이용하여 cDNA library를 제작하였다. 이 cDNA library로 부터 349개의 에너지 대사 관련 유전자를 선발 하였다. 에너지 대사 관련 유전자의 평균 사이즈는 0.49 kb이며, 에너지 관련 유전자들의 세부 기능별 발현을 분석한 결과 aerobic respiration(48.4%), accessory proteins of electron transport and membrane associated energy conservation(17.2%), glycolysis and gluconeogenesis(3.4%), electron transport and membrane associated energy conservation(2.9%), respiration(2.0%), glycolysis methylglyoxal byp-ass(1.7%), metabolism of energy reserves(0.6%)와 alcohol fermentation(0.3%)의 분포를 보였다. 인삼 잎에서 발현되는 유전자중 가장 많이 발현된 Chlorophyll a/b binding protein of IhcII type I(36.6%), Photosystem II oxygen-evolving complex protein(6.6%) 등이 발현되었다.

Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions

  • Deok Yun Kim;Gi Ppeum Han;Chiwoong Lim;Jun-Mo Kim;Dong Yong Kil
    • Animal Bioscience
    • /
    • 제36권11호
    • /
    • pp.1632-1646
    • /
    • 2023
  • Objective: The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. Methods: A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. Results: Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. Conclusion: HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.

Troglitazone Regulates white Adipose Tissue Metabolism by Activating Genes Involved in Fatty Acid ${\beta}$-Oxidation in High Fat Diet-fed C57BL/6J Mice

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.319-327
    • /
    • 2006
  • This study aimed to determine whether troglitazone stimulates genes related to fatty acid ${\beta}$-oxidation, leading to modulation of white adipose tissue (WAT) metabolism in high fat diet-fed mice. Female C57BL/6J mice were randomly divided into two groups (n=10/group). After they received either a high fat diet or the same high fat diet supplemented with troglitazone for 4 weeks, the effects of troglitazone on gene expression and physiology of WAT were measured using Northern, histological and serological analyses. Administration of troglitazone induced the expression of genes involved in mitochondrial and peroxisomal fatty acid ${\beta}$-oxidation in mesenteric WAT. Troglitazone also significantly increased uncoupling protein 2 mRNA levels. The changes in WAT gene expression were accompanied by reductions in circulating levels of free fatty acids and triglycerides as well as glucose and insulin. Histological studies showed that troglitazone treatment decreased the average size of adipocytes in mesenteric WAT. These results suggest that troglitazone-stimulated WAT expression of genes associated with fatty acid ${\beta}$-oxidation regulates WAT metabolism of high fat diet-fed mice, contributing to improvement of insulin sensitivity.

  • PDF

The Alcohol-inducible form of Cytochrome P450 (CYP 2E1): Role In Toxicology and Regulation of Expression

  • Novak, Raymond F.;Woodcroft, Kimberley J.
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.267-282
    • /
    • 2000
  • Cytochrome P45O (CYP) 2E1 catalyzes the metabolism of a wide variety of therapeutic agents, procarcinogens, and low molecular weight solvents. CYP2E1-catalyzed metabolism may cause toxicity or DNA damage through the production of toxic metabolites, oxygen radicals, and lipid peroxidation. CYP2E1 also plays a role in the metabolism of endogenous compounds including fatty acids and ketone bodies. The regulation of CYP2E1 expression is complex, and involves transcriptional, post-transcriptional, translational, and post-translational mechanisms. CYP2E1 is transcriptionally activated in the first few hours after birth. Xenobiotic inducers elevate CYP2E1 protein levels through both increased translational efficiency and stabilization of the protein from degradation, which appears to occur primarily through ubiquitination and proteasomal degradation. CYP2E1 mRNA and protein levels are altered in response to pathophysiologic conditions by hormones including insulin, glucagon, growth hormone, and leptin, and growth factors including epidermal growth factor and hepatocyte growth factor, providing evidence that CYP2E1 expression is under tight homeostatic control.

  • PDF

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.