• Title/Summary/Keyword: RNA Sequencing v

Search Result 104, Processing Time 0.025 seconds

Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes

  • Ziganshina, Elvira E.;Belostotskiy, Dmitry E.;Shushlyaev, Roman V.;Miluykov, Vasili A.;Vankov, Petr Y.;Ziganshin, Ayrat M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1464-1472
    • /
    • 2014
  • The microbial community structures of two continuous stirred tank reactors digesting turkey manure with pine wood shavings as well as chicken and swine manure were investigated. The reactor fed with chicken/swine wastes displayed the highest organic acids concentration (up to 15.2 g/l) and ammonia concentration (up to 3.7 g/l ammonium nitrogen) and generated a higher biogas yield (up to $366ml/g_{VS}$) compared with the reactor supplied with turkey wastes (1.5-1.8 g/l of organic acids and 1.6-1.7 g/l of ammonium levels; biogas yield was up to $195ml/g_{VS}$). The microbial community diversity was assessed using both sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Additionally, methanogens were analyzed using methyl coenzyme M reductase alpha subunit (mcrA) genes. The bacterial community was dominated by members of unclassified Clostridiales with the prevalence of specific clostridial phylotypes in each reactor, indicating the effect of the substrate type on the community structure. Of the methanogenic archaea, methanogens of the genus Methanosarcina were found in high proportions in both reactors with specific methanosarcinas in each reactor, whereas the strict hydrogenotrophic methanogens of Methanoculleus sp. were found at significant levels only in the reactor fed with chicken/swine manure (based on the analyses of 16S rRNA gene). This suggests that among methanogenic archaea, Methanosarcina species which have different metabolic capabilities, including aceticlastic and hydrogenotrophic methanogenesis, were mainly involved in anaerobic digestion of turkey wastes.

Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens

  • Zhu, Yaling;Mao, Huirong;Peng, Gang;Zeng, Qingjie;Wei, Qing;Ruan, Jiming;Huang, Jianzhen
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.143-153
    • /
    • 2021
  • Objective: To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. Methods: We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. Results: We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. Conclusion: These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.

Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway

  • Lee, Soon;Hong, Eunmi;Jo, Eunbi;Kim, Z-Hun;Yim, Kyung June;Woo, Sung Hwan;Choi, Yong-Soo;Jang, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.645-656
    • /
    • 2022
  • Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.

Clinical and genetic characteristics of Korean patients with IARS2-related disorders

  • Lee, Jin Sook;Kim, Man Jin;Kim, Soo Yeon;Lim, Byung Chan;Kim, Ki Joong;Choi, Murim;Seong, Moon-Woo;Chae, Jong-Hee
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.55-61
    • /
    • 2019
  • Purpose: Genetic defects in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases were first identified as causes of various disorders in 2007. Variants in IARS2, which encodes a mitochondrial isoleucyl-tRNA synthetase, were first reported in 2014. These variants are associated with diverse phenotypes ranging from CAGSSS (CAtaracts, Growth hormone deficiency, Sensory neuropathy, Sensorineural hearing loss, and Skeletal dysplasia) and Leigh syndrome to isolated nonsyndromic cataracts. Here, we describe the phenotypic and genetic spectrum of Korean patients with IARS2-related disorders. Materials and Methods: Using whole-exome sequencing followed by Sanger sequencing, we identified five patients with IARS2 mutations. Their medical records and brain magnetic resonance images were reviewed retrospectively. Results: All five patients presented with developmental delay or regression before 18 months of age. Three patients had bilateral cataracts, but none had hearing loss or sensory neuropathy. No evidence of skeletal dysplasia was noted, but two had short stature. One patient had cardiomyopathy and another exhibited renal tubulopathy and hypoparathyroidism. Their brain imaging findings were consistent with Leigh syndrome. Interestingly, we found the recurrent mutations p.R817H and p.V105Dfs*7 in IARS2. Conclusion: To our knowledge, this is the first report of Korean patients with IARS2-related disorders. Our findings broaden the phenotypic and genotypic spectrum of IARS2-related disorders in Korea and will help to increase clinical awareness of IARS2-related neurodegenerative diseases.

Prevelance of Common YMDD Motif Mutations in Long Term Treated Chronic HBV Infections in a Turkish Population

  • Alagozlu, Hakan;Ozdemir, Ozturk;Koksal, Binnur;Yilmaz, Abdulkerim;Coskun, Mahmut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5489-5494
    • /
    • 2013
  • In the current study we aimed to show the common YMDD motif mutations in viral polymerase gene in chronic hepatitis B patients during lamivudine and adefovir therapy. Forty-one serum samples obtained from chronic hepatitis B patients (24 male, 17 female; age range: 34-68 years) were included in the study. HBV-DNA was extracted from the peripheral blood of the patients using an extraction kit (Invisorb, Instant Spin DNA/RNA Virus Mini Kit, Germany). A line probe assay and direct sequencing analyses (INNO-LIPA HBV DR v2; INNOGENETICS N.V, Ghent, Belgium) were applied to determine target mutations of the viral polymerase gene in positive HBV-DNA samples. A total of 41 mutations located in 21 different codons were detected in the current results. In 17 (41.5%) patients various point mutations were detected leading to lamivudin, adefovir and/or combined drug resistance. Wild polymerase gene profiles were detected in 24 (58.5%) HBV positive patients of the current cohort. Eight of the 17 samples (19.5%) having rtM204V/I/A missense transition and/or transversion point mutations and resistance to lamivudin. Six of the the mutated samples (14.6%) having rtL180M missense transversion mutation and resistance to combined adefovir and lamivudin. Three of the mutated samples (7.5%) having rtG215H by the double base substituation and resistance to adefovir. Three of the mutated samples (7.5%) having codon rtL181W due to the missense transversion point mutations and showed resistance to combined adefovir and lamivudin. Unreported novel point mutations were detected in the different codons of polymerase gene region in the current HBV positive cohort fromTurkish population. The current results provide evidence that rtL180M and rtM204V/I/A mutations of HBV-DNA may be associated with a poor antiviral response and HBV chronicity during conventional therapy in Turkish patients.

Transcriptomic Profile in Pear Leave with Resistance Against Venturia nashicola Infection (배 검은별무늬병 감염과 저항성 방어반응 연관 전사체 프로파일)

  • Il Sheob Shin;Jaean Chun;Sehee Kim;Kanghee Cho;Kyungho Won;Haewon Jung;Keumsun Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.36-36
    • /
    • 2022
  • The molecular understanding of resistance and susceptibility of host plants to scab, a most threatful disease to pome fruit production worldwide, is very limited. Comparing resistant line '93-3-98' to susceptible one 'Sweet Skin' at seven time points of 0, 0.5, 1, 2, 3, 4, 8 days post inoculation, RNA-sequencing data derived from infected and mock-inoculated young leaves were analyzed to evaluate the tolerant response and to mine candidate genes of pear to the scab pathogen Venturia nashicola. Analysis of the mapped reads showed that the infection of V. nashicola led to significant differential expression of 17,827 transcripts with more than 3-fold change in the seven pairs of libraries, of which 9,672 (54%) are up- and 8,155(46%) are down-regulated. These included mainly receptor (NB-ARC domains-containing, CC-NBS-LRR, TIR-NBS-LRR, seven transmembrane MLO family protein) and transcription factor (ethylene responsive element binding, WRKY DNA-binding protein) related gene. An arsenal of defense response of highly resistant pear accessions derived from European pear was probably supposed no sooner had V. nashicola infected its host than host genes related to disease suppression like Polyketide cyclase/dehydrase and lipid transport protein, WRKY family transcription factor, lectin protein kinase, cystein-rich RLK, calcium-dependent phospholipid-binding copine protein were greatly boosted and eradicated cascade reaction induced by pathogen within 24 hours. To identify transcripts specifically expressed in response to V. nashicola, RT-PCRs were conducted and compare to the expression patterns of seven cultivars with a range of highly resistant to highly susceptible symptom. A DEG belonging to the PR protein family genes that were higher expressed in response to V. nashicola suggesting extraordinary role in the resistance response were led to the identification. This study provides the first transcriptional profile by RNA-seq of the host plant during scab disease and insights into the response of tolerant pear plants to V. nashicola.

  • PDF

Comparison of Microbial Community Compositions between Doenjang and Cheonggukjang Using Next Generation Sequencing (차세대 염기서열 분석법을 이용한 전통 된장과 청국장의 미생물 분포 분석)

  • Ha, Gwangsu;Kim, JinWon;Shin, Su-Jin;Jeong, Su-Ji;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.922-928
    • /
    • 2021
  • To profile the microbial compositions of Korean traditional fermented paste made from whole soybeans, Doenjang and Cheonggukjang, and compare their taxonomic differences, we analyzed the V3-V4 region of 16S rRNA of naturally fermented foods by using next generation sequencing. α-Diversity results showed that values indicating bacterial community abundances (OTUs) and richness (ACE, Chao1) were statistically significant (p=0.0001) in Doenjang and Cheonggukjang. Firmicutes was the most common phylum in both groups, representing 97.02% and 99.67% in the Doenjang and Cheonggukjang groups, respectively. Bacillus was the most dominant genus, accounting for 71.70% and 59.87% in both groups. Linear discriminant (LDA) effect size (LEfSe) analysis was performed to reveal the significant ranking of abundant taxa in different fermented foods. A size-effect threshold of 2.0 on the logarithmic LDA score was used for discriminative functional biomarkers. On the species level, Bacillus subtilis, Tetragenococcus halophilus, and Clostridium arbusti were significantly more abundant in Doenjang than in Cheonggukjang, whereas Bacillus thermoamylovorans, Enterococcus faecium, and Lactobacillus sakei were significantly more abundant in Cheonggukjang than in Doenjang. Permutational multivariate analysis of variance (PERMANOVA) showed that the statistical difference in microbial clusters between the two groups was significant at the confidence level of p=0.001. This research could be used as basic research to identify the correlation between the biochemical characteristics of Korean fermented foods and the distribution of microbial communities.

Identification of a New Agar-hydrolyzing Bacterium Vibrio sp. S4 from the Seawater of Jeju Island and the Biochemical Characterization of Thermostable Agarose (제주도 연안 해양에서 분리한 한천분해 미생물 Vibrio sp. S4의 동정 및 내열성 agarase의 생화학적 특성)

  • Lee, Chang-Ro;Chi, Won-Jae;Bae, Chang-Hwan;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Agar-hydrolyzing bacteria were isolated from the coastal sea water of Jeju Island. One isolate, designated as S4, was selected for further study. The S4 cells were Gram-negative and rod-shaped with smooth beige surfaces and single polar flagellum. Cells were grown at $15-42^{\circ}C$, 0.5-5% (w/v) NaCl, between pH 6.0 and 9.0, and in media containing 0.5-5% (w/v) NaCl. The G+C content was 49.93 mol%. The major fatty acids (>15%) were $C_{18:1}{\omega}7c$, $C_{16:0}$ and Summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH). Based on 16S rRNA sequencing and biochemical and chemotaxonomic characteristics, the strain was designated as Vibrio sp. S4. In liquid culture supplemented with 0.1% agar the cell density and agarase activity reached a maximum level in 72 h, while agarase activity in the culture without agar was negligible, implying agarose expression is induced by agar. The optimum pH and temperature for the extracellular crude agarase of S4 were 7.0 and $45^{\circ}C$, respectively. However, it also exhibited 98.6% and 87.6% at $40^{\circ}C$ and $50^{\circ}C$, respectively, of the maximum activity seen at $45^{\circ}C$. The crude agarase hydrolyzed agarose into (neo)agarotetraose and (neo)agarohexaose.

Isolation and identification of Vibrio harveyi from chub mackerel (Scomber japonicus)

  • Lee, Young-Ran;Jun, Jin-Woo;Giri, Sib Sankar;Kim, Hyoun-Joong;Yun, Sae-Kil;Chi, Cheng;Kim, Sang-Guen;Koh, Jeong-Rack;Jung, Ji-Yun;Park, Se Chang
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.45-46
    • /
    • 2016
  • For several days, there was a series of mortalities of chub mackerel (Scomber japonicus) that were reared for public exhibition in a private aquarium in Seoul, Korea. As part of the diagnosis of the dead fish, a bacterial isolate from the kidney was cultured, identified, and confirmed to be Vibrio (V.) harveyi using Vitek System 2 and 16S rRNA gene sequencing. Phylogenetic analysis was also performed by the neighbor-joining method. As a result, the V. harveyi isolated from chub mackerels of a private aquarium in Korea, called as SNUVh-LW1, was clustered in the same group with V. harveyi ATCC33843.

Analysis of Bacterial Diversity in Fermented Skate Using Culture-dependent and Culture-independent Approaches (배양 의존적 및 배양 비의존적 방법에 의한 홍어회 서식 미생물의 다양성 분석)

  • Lee, Eun-Jung;Kim, Tae-Hyung;Kim, Ha-Kun;Lee, Jung-Kee;Kwak, Hahn-Shik;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.322-328
    • /
    • 2010
  • Fermented skate is a traditional Korean food popular in Southwestern area of Korea. It has a characteristic flavor and alkaline pH. In this study we tried to determine the microbial flora in fermented skate using two different approaches. In culture-independent method, we amplified V2 region of 16S rRNA gene by PCR and cloned them into pUC18 plasmid to construct 16S rDNA fragment library. BLAST searches for the sequences obtained from this library revealed that uncultured bacterium clone 054E11.b was the most dominant flora in this fermented fish. In culture-dependent method, we diluted suspension of skate and spreaded on MRS, PCA, and MacConkey plates. We identified colonies grown on those plates by using PCR amplification of V2 region of 16S rRNA and DNA sequencing. BLAST searches of those DNA sequences resulted in totally different species with the observations from the 16S rDNA library analysis. Discrepancies of results obtained from both approaches suggest that the agar plates used in culture-dependent method may be different from the real condition of fermented skate. Therefore, results from culture-independent approach using 16S rDNA fragment library analysis may reflect real microbial flora in fermented skate.