Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens |
Zhu, Yaling
(College of Animal Science and Technology, Jiangxi Agricultural University)
Mao, Huirong (College of Animal Science and Technology, Jiangxi Agricultural University) Peng, Gang (College of Animal Science and Technology, Jiangxi Agricultural University) Zeng, Qingjie (College of Animal Science and Technology, Jiangxi Agricultural University) Wei, Qing (College of Animal Science and Technology, Jiangxi Agricultural University) Ruan, Jiming (College of Animal Science and Technology, Jiangxi Agricultural University) Huang, Jianzhen (College of Animal Science and Technology, Jiangxi Agricultural University) |
1 | Spurlock ME, Savage JE. Effect of dietary protein and selected antioxidants on fatty liver hemorrhagic syndrome induced in japanese quail. Poult Sci 1993;72:2095-105. https://doi.org/10.3382/ps.0722095 DOI |
2 | Leeson EJSS. Aetiology of fatty liver syndrome in laying hens. Br Vet J 1988;144:602-9. https://doi.org/10.1016/0007-1935(88)90031-0 DOI |
3 | Li J, Zhao XL, Yuan YC, et al. Dietary lysine affects chickens from local Chinese pure lines and their reciprocal crosses. Poult Sci 2013;92:1683-9. https://doi.org/10.3382/ps.2012-02865 DOI |
4 | Trott KA, Giannitti F, Rimoldi G, et al. Fatty liver hemorrhagic syndrome in the backyard chicken: a retrospective histopathologic case series. Vet Pathol 2014;51:787-95. https://doi.org/10.1177/0300985813503569 DOI |
5 | Rozenboim I, Mahato J, Cohen NA, Tirosh O. Low protein and high-energy diet: a possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poult Sci 2016;95:612-21. https://doi.org/10.3382/ps/pev367 DOI |
6 | Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. The JAK/STAT pathway in obesity and diabetes. FEBS J 2016;283:3002-15. https://doi.org/10.1111/febs.13709 DOI |
7 | Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548-56. https://doi.org/10.1210/jc.2004-0395 DOI |
8 | Yasukawa H, Ohishi M, Mori H, et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 2003;4:551-6. https://doi.org/10.1038/ni938 DOI |
9 | Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2015;33:139-67. https://doi.org/10.1146/annurev-immunol-032713-120211 DOI |
10 | Wang B, Charukeshi Chandrasekera P, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 2014;10:131-45. https://doi.org/10.2174/1573399810666140508121012 DOI |
11 | Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995;86:1243-54. https:// doi.org/10.1182/blood.V86.4.1243.bloodjournal8641243 DOI |
12 | Galic S, Sachithanandan N, Kay TW, Steinberg GR. Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochem J 2014;461:177-88. https://doi.org/10.1042/BJ20140143 DOI |
13 | Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006;444:847-53. https://doi.org/10.1038/nature05483 DOI |
14 | Neels JG, Olefsky JM. Inflamed fat: what starts the fire? J Clin Invest 2006;116:33-5. https://doi.org/10.1172/JCI27280 DOI |
15 | Adachi H, Murase D, Ohkubo T. Inhibitory mechanism of signal transduction through chicken leptin receptor by suppressor of cytokine signaling-3 (SOCS3). Japan Poult Sci 2013;50:262-9. https://doi.org/10.2141/jpsa.0120166 DOI |
16 | Baker DH, Han Y. Ideal amino acid profile for chicks during the first three weeks posthatching. Poult Sci 1994;73:1441-7. https://doi.org/10.3382/ps.0731441 DOI |
17 | Cinti S. The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc 2001;60:319-28. https://doi.org/10.1079/PNS200192 DOI |
18 | Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcriptlevel expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016;11:1650-67. https://doi.org/10.1038/nprot.2016.095 DOI |
19 | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8 DOI |
20 | Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923-30. https://doi.org/10.1093/bioinformatics/btt656 DOI |
21 | Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635 DOI |
22 | McManus CJ, Duff MO, Eipper-Mains J, Graveley BR. Correction for McManus et al, Global analysis of trans-splicing in Drosophila. PNAS 2013;110:7958-9. https://doi.org/10.1073/pnas.1304972110 DOI |
23 | Sato H, Taketomi Y, Ushida A, et al. The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab 2014;20:119-32. https://doi.org/10.1016/j.cmet.2014.05.002 DOI |
24 | Ohi K, Ursini G, Li M, et al. DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain. Transl Psychiatry 2015;5:e550. https://doi.org/10.1038/tp.2015.45 DOI |
25 | Bostrom M, Kalm M, Eriksson Y, et al. A role for endothelial cells in radiation-induced inflammation. Int J Radiat Biol 2018:94:259-71. https://doi.org/10.1080/09553002.2018.1431699 DOI |
26 | Taddeo EP, Hargett SR, Lahiri S, et al. Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3. Sci Rep 2017;7:127. https://doi.org/10.1038/s41598-017-00210-y DOI |
27 | Stumpff F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch 2018;470:571-98. https://doi.org/10.1007/s00424-017-2105-9 DOI |
28 | Monestier O, Blanquet V. WFIKKN1 and WFIKKN2: "Companion" proteins regulating TGFB activity. Cytokine Growth Factor Rev 2016;32:75-84. https://doi.org/10.1016/j.cytogfr.2016.06.003 DOI |
29 | Shepherd SO, Cocks M, Meikle PJ, et al. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int J Obes (Lond) 2017;41:1745-54. https://doi.org/10.1038/ijo.2017.170 DOI |
30 | Biswas S, Adrian M, Evdokimov K, et al. Counter-regulation of the ligand-receptor pair Leda-1/Pianp and Pilrα during the LPS-mediated immune response of murine macrophages. Biochem Biophys Res Commun 2015;464:1078-83. https://doi.org/10.1016/j.bbrc.2015.07.079 DOI |
31 | Wilkinson TS, Roghanian A, Simpson AJ, Sallenave J-M. WAP domain proteins as modulators of mucosal immunity. Biochem Soc Trans 2011;39:1409-15. https://doi.org/10.1042/BST0391409 DOI |
32 | Wirth TC, Xue HH, Rai D, et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity 2010;33:128-40. https://doi.org/10.1016/j.immuni.2010.06.014 DOI |
33 | Rowe ER, Mimmack ML, Barbosa AD, et al. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1-3. J Biol Chem 2016;291:6664-78. https://doi.org/10.1074/jbc.M115.691048 DOI |
34 | O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012;36:542-50. https://doi.org/10.1016/j.immuni.2012.03.014 DOI |
35 | Nonogaki K, Pan XM, Moser AH, et al. LIF and CNTF, which share the gp130 transduction system, stimulate hepatic lipid metabolism in rats. Am J Physiol Endocrinol Metab 1996;271:E521-8. https://doi.org/10.1152/ajpendo.1996.271.3.E521 DOI |
36 | Watt MJ, Dzamko N, Thomas WG, et al. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 2006;12:541-8. https://doi.org/10.1038/nm1383 DOI |