• Title/Summary/Keyword: RNA Polymerase II

Search Result 153, Processing Time 0.028 seconds

Detection of Fusarium verticillioides Contaminated in Corn Using a New Species-specific Primer (종 특이 primer를 이용한 옥수수 오염 Fusarium verticillioides의 PCR 검출)

  • Kang, Mi-Ran;Kim, Ji-Hye;Lee, Seung-Ho;Ryu, Jae-Gee;Lee, Theresa;Yun, Sung-Hwan
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.369-375
    • /
    • 2011
  • Fusarium verticillioides (teleomorph: Gibberella moniliformis), a member of the Gibberellea fujikuroi species complex, causes rots of corn stalks and ears, and produces a group of mycotoxins known as fumonisins that are harmful to animals and humans. Here, we focus on the development of a species-specific PCR primer set for differentiating F. verticillioides from other fumonisin-producing Fusarium species belonging to the species complex, such as F. proliferatum, F. fujikuroi, and F. subglutinans that are frequently associated with corn. The specific primers (RVERT1 and RVERT2) derived from the nucleotide sequences of RNA polymerase II beta subunit (RPB2) gene amplified a 208 bp-DNA fragment from only F. verticillioides isolates among the potential fumonisin-producing species examined; all of these isolates were shown to carry FUM1 required for fumonisin biosynthesis. The PCR detection limit using this specific primer set was approximately 0.125 pg/${\mu}l$ genomic DNA of F. verticillioides. In addition, the F. verticillioides-specfic fragment was successfully amplified from genomic DNAs of corn samples contaminated with Fusarium spp. This primer set would provide a useful tool for the detection and differentiation of potential fumonisin-producing F. verticillioides strains in cereal samples.

microRNA Expression Profile in Patients with Stage II Colorectal Cancer: A Turkish Referral Center Study

  • Tanoglu, Alpaslan;Balta, Ahmet Ziya;Berber, Ufuk;Ozdemir, Yavuz;Emirzeoglu, Levent;Sayilir, Abdurrahim;Sucullu, Ilker
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1851-1855
    • /
    • 2015
  • Background: There are increasing data about microRNAs (miRNA) in the literature, providing abundant evidence that they play important roles in pathogenesis and development of colorectal cancer. In this study, we aimed to investigate the miRNA expression profiles in surgically resected specimens of patients with recurrent and non-recurrent colorectal cancer. Materials and Methods: The study population included 40 patients with stage II colorectal cancer (20 patients with recurrent tumors, and 20 sex and age matched patients without recurrence), who underwent curative colectomy between 2004 and 2011 without adjuvant therapy. Expression of 16 miRNAs (miRNA-9, 21, 30d, 31, 106a, 127, 133a, 133b, 135b, 143, 145, 155, 182, 200a, 200c, 362) was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in all resected colon cancer tissue samples and in corresponding normal colonic tissues. Data analyses were carried out using SPSS 15 software. Values were statistically significantly changed in 40 cancer tissues when compared to the corresponding 40 normal colonic tissues (p<0.001). MiR-30d, miR-133a, miR-143, miR-145 and miR-362 expression was statistically significantly downregulated in 40 resected colorectal cancer tissue samples (p<0.001). When we compared subgroups, miRNA expression profiles of 20 recurrent cancer tissues were similar to all 40 cancer tissues. However in 20 non-recurrent cancer tissues, miR-133a expression was not significantly downregulated, moreover miR-133b expression was significantly upregulated (p<0.05). Conclusions: Our study revealed dysregulation of expression of ten miRNAs in Turkish colon cancer patients. These miRNAs may be used as potential biomarkers for early detection, screening and surveillance of colorectal cancer, with functional effects on tumor cell behavior.

Knockdown of Med19 Suppresses Proliferation and Enhances Chemo-sensitivity to Cisplatin in Non-small Cell Lung Cancer Cells

  • Wei, Ling;Wang, Xing-Wu;Sun, Ju-Jie;Lv, Li-Yan;Xie, Li;Song, Xian-Rang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.875-880
    • /
    • 2015
  • Mediator 19 (Med19) is a component of the mediator complex which is a coactivator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The involvement of Med19 in sensitivity to the chemotherapeutic agent cisplatin was here investigated. We employed RNA interference to reduce Med19 expression in human non-small cell lung cancer (NSCLC) cell lines and analyzed their phenotypic changes. The results showed that after Med19 siRNA transfection, expression of Med19 mRNA and protein was dramatically reduced (p<0.05). Meanwhile, impaired growth potential, arrested cell cycle at G0/G1 phase and enhanced sensitivity to cisplatin were exhibited. Apoptosis and caspase-3 activity were increased when cells were exposed to Med19 siRNA and/or cisplatin. The present findings suggest that Med19 facilitates tumorigenic properties of NSCLC cells and knockdown of Med19 may be a rational therapeutic tool for lung cancer cisplatin sensitization.

A STUDY ON THE EXPRESSION OF TYPE I AND TYPE II COLLAGEN GENES AND PROTEINS IN THE DEVELOPING HUMAN MANDIBLE

  • Kook, Yoon-Ah;Kim, Sang-Cheol;Kim, Eun-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.723-731
    • /
    • 1995
  • Type I and type II collagens are considered the major collagens of bone and cartilage respectively. Monitoring the patterns of those gene and protein expressions during development will provide a basis for the understanding of the normal and abnormal growths. This study was undertaken to investigate the expression of collagen genes and proteins involved in the developing human mandible. Fifty embryos and fetuses were studied with Alcian blue-PAS, Masson's Trichrome, reverse transcription polymerase chain reaction (RT-PCR), Western blot analysis, and Southern blot analysis. Our results showed that $pro-{\alpha}1(II)$ collagen gene expression begins in the 5th week. Type II collagen is synthesized in mesenchymal cells in advance: of overt chondrogenesis. The gene expression for type II collagen was highest during the appearance of Meckel's cartilage. There was a switch in collagen protein expression from type I to type II during the appearance stage of Meckel's cartilage. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen protein. The endochondral ossification was observed where there was direct replacement of cartilage by bone.

  • PDF

Development of a Virus Elution and Concentration Procedure for Detecting Norovirus in Cabbage and Lettuce

  • Moon, Aerie;Hwang, In-Gyun;Choi, Weon-Sang
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.407-412
    • /
    • 2009
  • In this study, a rapid and efficient concentrating procedure that can be used for detecting viruses in vegetables was developed. The Sabin strain of poliovirus type 1 was used to evaluate the efficiency of virus recovery. The procedure included: (a) elution with 0.25 M threonine-0.3 M NaCl pH 9.5; (b) polyethylene glycol (PEG) 8000 precipitation; (c) chloroform extraction; (d) 2$^{nd}$ PEG precipitation; (f) RNA extraction; (g) reverse transcription-polymerase chain reaction (RT-PCR) combined with semi-nested PCR. The overall recoveries by elution/concentration were 29.0% from cabbage and 13.7% from lettuce. The whole procedure usually takes 18 hr. The overall detection sensitivity was 100 RT-PCR units of genogroup II norovirus (GII NoV)/25 g cabbage and 100 RT-PCR units of GII NoV/10 g lettuce. The virus detecting method developed in this study should facilitate the detection of low levels of NoV in cabbage and lettuce.

Sequence Analysis of Small Round Structured Viruses (SRSV) Isolated from a Diarrheal Patient in Wonju (원주지역 설사 환자에서 분리한 Small Round Structured Viruses (SRSV) 염기서열 분석)

  • Jee, Young-Mee;Kim, Ki-Soon;Cheon, Doo-Sung;Park, Jeong-Koo;Kang, Young-Hwa;Chung, Yoon-Suck;Go, Un-Yeong;Shin, Young-Hack;Yoon, Jae-Deuk
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.247-259
    • /
    • 1999
  • Small round structured viruses (SRSV) are the major ethological agents which can cause outbreaks of non-bacterial gastroenteritis or food poisoning both in children and adults. The classification of family Caliciviridae to which SRSV belong, is based on the genome encoding three open reading frames. The rotavirus is another major pathogen which causes diarrhea in young children. We examined stool specimens obtained from diarrheal patients in Wonju from which bacterial pathogens were not found. To detect causative viruses from stool specimens of patients, reverse transcription (RT)-polymerase chain reaction (PCR) or nested PCR using rotavirus or SRSV specific primers was performed. In this study, RT-nested PCR procedure which can amplify a 330 bp fragment derived from RNA dependent RNA polymerase (RDRP) region within ORF1 was applied for the detection of SRSV. For the detection of rotaviruses, a 877 bp fragment from the VP4 region of rotavirus genome was amplified. As a result, rotavirus was not detected while SRSV sequences were detected from one out of five specimens. The nucleotide and amino acid sequences of the Wonju isolate were compared with other 6 Korean isolates which have been isolated and sequenced in our laboratory. Sequence analysis revealed that the Wonju isolate was rather distinct from other Korean isolates: the Wonju isolate was closer to genogroup I of SRSV while other 6 Korean isolates belonged to genogroup II.

  • PDF

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

RNA Polymerase II Inhibitor, ${\alpha}$-Amanitin, Affects Gene Expression for Gap Junctions and Metabolic Capabilities of Cumulus Cells, but Not Oocyte, during In Vitro Mouse Oocyte Maturation

  • Park, Min-Woo;Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.17 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • A specific inhibitor of RNA polymerase II, ${\alpha}$-amanitin is broadly used to block transcriptional activities in cells. Previous studies showed that ${\alpha}$-amanitin affects in vitro maturation of cumulus-oocyte-complex (COC). In this study, we evaluated the target of ${\alpha}$-amanitin, and whether it affects oocytes or cumulus cells (CCs), or both. We treated ${\alpha}$-amanitin with different time period during in vitro culture of denuded oocytes (DOs) or COCs in comparison, and observed the changes in morphology and maturation status. Although DOs did not show any change in morphology and maturation rates with ${\alpha}$-amanitin treatment, oocytes from COCs were arrested at metaphase I (MI) stage and CCs were more scattered than control groups. To discover causes of meiotic arrest and scattering of CCs, we focused on changes of cumulus expansion, gap junctions, and cellular metabolism which to be the important factors for the successful in vitro maturation of COCs. Expression of genes for cumulus expansion markers (Ptx3, Has2, and Tnfaip6) and gap junctional proteins (Gja1, Gja4, and Gjc1) decreased in ${\alpha}$-amanitin-treated CCs. However, these changes were not observed in oocytes. In addition, expression of genes related to metabolism (Prps1, Rpe, Rpia, Taldo1, and Tkt) decreased in ${\alpha}$-amanitin-treated CCs but not in oocytes. Therefore, we concluded that the transcriptional activities of CCs for supporting suitable transcripts, especially for its metabolic activities and formation of gap junctions among CCs as well as with oocytes, are important for oocytes maturation in COCs.

Delimitation of Russula Subgenus Amoenula in Korea Using Three Molecular Markers

  • Park, Myung Soo;Fong, Jonathan J.;Lee, Hyun;Oh, Seung-Yoon;Jung, Paul Eunil;Min, Young Ju;Seok, Soon Ja;Lim, Young Woon
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.191-201
    • /
    • 2013
  • Distinguishing individual Russula species has been difficult due to extensive phenotypic plasticity and obscure morphological and anatomical discontinuities. Due to highly similar macroscopic features, such as the presence of a red-cap, species identification within the Russula subgenus Amoenula is particularly difficult. Three species of the subgenus Amoneula have been reported in Korea. We used a combination of morphology and three molecular markers, the internal transcribed spacer (ITS), 28S nuclear ribosomal large subunit (LSU), and RNA polymerase II gene (RPB2), for identification and study of the genetic diversity of Russula subgenus Amoenula in Korea. We identified only two species in Korea (R. mariae and R. violeipes); these two species were indistinguishable according to morphology and LSU, but were found to be reciprocally monophyletic species using ITS and RPB2. The markers, ITS, LSU, and RPB2, have been tested in the past for use as DNA barcoding markers, and findings of our study suggest that ITS and RPB2 had the best performance for the Russula subgenus Amoneula.

Identification of Sphaerulina azaleae on Korean Azalea in Korea Based on Morphological Characteristics and Multilocus Sequence Typing (형태적 특징 및 다좌위 염기서열 분석에 의한 산철쭉 모무늬병균 Sphaerulina azaleae 동정)

  • Choi, In-Young;Choi, Young-Joon;Lee, Kui-Jae;Ju, Ho-Jong;Cho, Seong-Wan;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.48 no.3
    • /
    • pp.329-335
    • /
    • 2020
  • From 2008 to 2017, Korean azalea (Rhododendron yedoense f. poukhanense) showing angular, necrotic leaf spots were found in Jeju and Hongcheon, Korea. The lesions occurred frequently, detracting from the beauty of the glossy green leaves of the plant and causing premature defoliation. Therefore, to identify the fungus associated with the lesions, morphological characterization and molecular phylogenetic analysis of actin (Act), translation elongation factor 1-alpha (EF), internal transcribed spacer (ITS), 28S nrDNA (LSU), and RNA polymerase II encoding the second largest subunit (RPB2) of the two representative isolates were performed. The phylogenetic tree inferred from the neighbor-joining method showed the isolates clustering in the Sphaerulina azaleae group. Therefore, the fungus associated with the angular leaf spots on the Korean azalea was identified as Sphaerulina azaleae.