• Title/Summary/Keyword: RNA Interference

Search Result 237, Processing Time 0.022 seconds

Current and Future of dsRNA-mediated Pest Management (Double-stranded RNA(dsRNA)를 이용한 해충방제의 현황과 미래)

  • Yoon, June-sun;Ji, Chang Yoon;Seong, Keon Mook;Choi, Man-yeon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.211-219
    • /
    • 2022
  • Over the past decade, double-stranded RNA (dsRNA)-mediated gene silencing technology has progressed significantly for pest management in agriculture and for protecting beneficial insects from pathogens. Recently, breakthroughs in RNA interference (RNAi) applications for insect pest management by academia and commercial entities have provided RNAi products as commercial biopesticides. Although RNAi technology has vast potential and advantages for pest control, challenges, and limitations remain in practical applications. This review explores current challenges in the development of dsRNAs as a pest management tool and considers new approaches to overcome biological and environmental obstacles, such as poor stability and resistance.

Validation of Gene Silencing Using RNA Interference in Buffalo Granulosa Cells

  • Monga, Rachna;Datta, Tirtha Kumar;Singh, Dheer
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1529-1540
    • /
    • 2011
  • Silencing of a specific gene using RNAi (RNA interference) is a valuable tool for functional analysis of a target gene. However, information on RNAi for analysis of gene function in farm animals is relatively nil. In the present study, we have validated the interfering effects of siRNA (small interfering RNA) using both quantitative and qualitative gene silencing in buffalo granulosa cells. Qualitative gene knockdown was validated using a fluorescent vector, enhanced green fluorescence protein (EGFP) and fluorescently labeled siRNA (Cy3) duplex. While quantitatively, siRNA targeted against the luciferase and CYP19 mRNA was used to validate the technique. CYP19 gene, a candidate fertility gene, was selected as a model to demonstrate the technique optimization. However, to sustain the expression of CYP19 gene in culture conditions using serum is difficult because granulosa cells have the tendency to luteinize in presence of serum. Therefore, serum free culture conditions were optimized for transfection and were found to be more suitable for the maintenance of CYP19 gene transcripts in comparison to culture conditions with serum. Decline in fluorescence intensity of green fluorescent protein (EGFP) was observed following co-transfection with plasmid generating siRNA targeted against EGFP gene. Quantitative decrease in luminescence was seen when co-transfected with siRNA against the luciferase gene. A significant suppressive effect on the mRNA levels of CYP19 gene at 100 nM siRNA concentration was observed. Also, measurement of estradiol levels using ELISA (enzyme-linked immunosorbent assay) showed a significant decline in comparison to control. In conclusion, the present study validated gene silencing using RNAi in cultured buffalo granulosa cells which can be used as an effective tool for functional analysis of target genes.

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus

  • Barandoc, Karen P.;Park, Jay-Young;Kim, Yong-Gyun
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.279-283
    • /
    • 2010
  • Polydnavirus genome is segmented and dispersed on host wasp chromosome. After replication, the segments form double- stranded circular DNAs and embedded in viral coat proteins. These viral particles are delivered into a parasitized host along with parasitoid eggs. A serine-rich protein (SRP) is predicted in a polydnavirus, Cotesia plutellae bracovirus (CpBV), genome in its segment no. 33 (CpBV-S33), creating CpBV-SRP1. This study explored its expression and physiological function in the diamondback moth, Plutella xylostella, larvae parasitized by C. plutellae. CpBV-SRP1 encodes 122 amino acids with 26 serines and several predicted phosphorylation sites. It is persistently expressed in all tested tissues of parasitized P. xylostella including hemocyte, fat body, and gut. Its physiological function was analyzed by injecting CpBV-S33 and inducing its expression in nonparasitized P. xylostella by a technique called SERI (segment expression and RNA interference). The expression of CpBV-SRP1 significantly impaired the spreading behavior and total cell count of hemocytes of treated larvae. Subsequent RNA interference of CpBV-SRP1 rescued the immunosuppressive response. This study reports the persistent expression of CpBV-SRP1 in a parasitized host and its parasitic role in suppressing the host immune response by altering hemocyte behavior and survival.

Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression

  • Yang, Fan;Gong, Yanfen;Liu, Gang;Zhao, Shengming;Wang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1101-1107
    • /
    • 2015
  • The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

Changes in Apoptosis-related Gene Expression Induced by Repression of FGFR1 by RNA Interference in Embryonic Fibroblasts and Cancerous Cells from Chicken

  • Lee, Sang-In;Lee, Bo-Ram;Hwang, Young-Sun;Rengaraj, Deivendran;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.521-527
    • /
    • 2010
  • Fibroblast growth factor receptor 1 (FGFR1) plays roles in angiogenesis, wound healing, and embryonic development via the regulation of cell proliferation, differentiation, and survival. It is well known that ectopic expression of FGFR1 is associated with cancer development. To characterize the function of FGFR1 in the normal and cancer cell lines DF-1 and DT40, respectively, we performed FGFR1 knockdown by RNA interference. In the DT40 cells, FGFR1 knockdown induced upregulation of FGFR2 and FGFR3 expression, downregulation of pro-apoptosis-related genes, and upregulation of anti-apoptosis-related genes. However, in DF-1 cells, FGFR1 knockdown induced upregulation of pro-apoptosis-related genes and downregulation of anti-apoptosis-related genes. Our data suggest that repression of FGFR1 induced upregulation of other FGF receptors and anti-apoptosis-related genes in cancer cells and pro-apoptosis-related genes in normal cells.

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon;Kim, Hyun Ju;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1919-1926
    • /
    • 2020
  • CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro

  • Wang, Shu-zhen;Luo, Xue-gang;Shen, Jing;Zou, Jia-ning;Lu, Yun-hua;Xi, Tao
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.294-299
    • /
    • 2008
  • Elevated expression of SMYD3 is a frequent genetic abnormality in several malignancies. Few studies knocking down SMYD3 expression in cervical carcinoma cells have been performed to date. In this paper, we established an inducible short hairpin RNA expression system to examine its role in maintaining the malignant phenotype of HeLa cells. After being induced by doxycycline, SMYD3 mRNA and protein expression were both reduced, and significant reductions in cell proliferation, colony formation and migration/invasion activity were observed in the SMYD3-silenced HeLa cells. The percentage of cells in sub-G1 was elevated and DNA ladder formation could be detected, indicating potent induction of apoptosis by SMYD3 knockdown. These findings imply that SMYD3 plays crucial roles in HeLa cell proliferation and migration/invasion, and that it may be a useful therapeutic target in human cervical carcinomas.

Modification of amylose content of sweetpotato starch by RNAi technique

  • Shimada, Takiko;Otani, Motoyasu;Hamada, Tatsurou;Kim, Sun-Hyung
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.351-355
    • /
    • 2005
  • In the storage roots of sweetpotato (Ipomoea batatas (L.) Lam. cv. Kokei 14), 10 to 20% of starch is essentially unbranched linear amylose and the other major component is branched amylopectin. Amylose is produced by the enzyme GBSSI (granule bound starch synthase I), whereas amylopectin is produced by a concerted action of soluble starch synthase and starch branching enzymes (SBEI and SBEII). We constructed double-stranded RNA (dsRNA) interference vectors of GBSSI and IbSBEII and introduced them into sweetpotato genome via Agrobacterium-mediated gene transformation. The endogenous GBSSI expression was inhibited by dsRNA of GBSSI in 73 % of transgenic plants giving rise to the storage tubers containing amylopectin but not amylose. On the other hand, all sweetpotato plants transformed with dsRNA of IbSBEII contained a larger amount of amylose than the non-transgenic control (up to 25% compared to 10% in the controls). The RNA interference (RNAi) is effectively inhibited the gene expression in thestarch metabolic pathway and modified the characteristics of starch in sweetpotato.

  • PDF