Browse > Article
http://dx.doi.org/10.4014/jmb.1108.08045

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells  

Kim, Na-Young (Department of Life Science, Sogang University)
Baek, Jin-Young (Department of Life Science, Sogang University)
Choi, Hong-Seok (Department of Life Science, Sogang University)
Chung, In-Sik (Department of Genetic Engineering, Kyung Hee University)
Shin, Sung-Ho (Department of Life Science, Sogang University)
Lee, Jung-Ihn (Department of Computer Science and Information, Hanyang Women's University)
Choi, Jung-Yun (Hazard Substances Analysis Division, Seoul Regional Food and Drug Administration)
Yang, Jai-Myung (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.2, 2012 , pp. 190-198 More about this Journal
Abstract
RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.
Keywords
shRNA; T. ni cells; U6 promoter; ${\beta}$-N-acetylglucosaminidase; glycoprotein;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Amarzguioui, M. and H. Prydz. 2004. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316: 1050-1058.   DOI   ScienceOn
2 Bernstein, E., A. A. Caudy, S. M. Hammond, and G. J. Hannon. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363-366.   DOI   ScienceOn
3 Brummelkamp, T. R., R. Bernards, and R. Agami. 2002. A system for stable expression of short interfering RNAs mammalian cells. Science 296: 550-553.   DOI   ScienceOn
4 Castanotto, D., H. Li, and J. J. Rossi. 2002. Functional siRNA expression from transfected PCR products. RNA 8: 1454-1460.   DOI   ScienceOn
5 Couzin, J. 2002. Breakthrough of the year. Small RNAs make big splash. Science 306: 1124-1125.
6 Dahlberg, J. E., E. Lund, and M. L. Birnstiel. 1988. The Genes and Transcription of the Major Small Nuclear RNAs, pp. 38-70. Springer-Verlag KG, Heidelberg, Federal Republic of Germany.
7 Dykxhoorn, D. and J. Lieberman. 2006. Knocking down disease with siRNAs. Cell 126: 231-235.   DOI   ScienceOn
8 Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. 1998. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature 391: 806-811.   DOI   ScienceOn
9 Geiduschenk, E. P. and G. A. Kassavetis. 2001. The RNA polymerase transcription apparatus. J. Mol. Biol. 310: 1-26.   DOI   ScienceOn
10 Geisler, C., J. J. Aumiller, and D. L. Jarvis. 2008. A fused lobes gene encodes the processing of ${\beta}$-N-acetylglucosaminidase in Sf9 cells. J. Biol. Chem. 283: 11330-11339.   DOI   ScienceOn
11 Geisler, C. and D. L. Jarvis. 2010. Identification of genes encoding N-glycan processing ${\beta}$-N-acetylglucosaminidases in Trichoplusia ni and Bombyx mori: Implications for glycoengineering of baculovirus expression systems. Biotechnol. Prog. 26: 34-44.
12 Gou, D., N. Jin, and L. Liu. 2003. Gene silencing in mammalian cells by PCR-based short hairpin RNA. FEBS Lett. 548: 113-118.   DOI   ScienceOn
13 Hebert, C. G., J. J. Valdes, and W. E. Bentley. 2009. In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five cell culture with the baculovirus expression vector system. Biotechnol. Bioeng. 104: 390-399.   DOI   ScienceOn
14 Jarvis, D. L. 2003. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310: 1-7.   DOI   ScienceOn
15 Jason, R. H. and D. L. Jarvis. 2001. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian ${\beta}1$,4-galactosyltransferase and ${\alpha}$,6-sialyltransferase genes. Glycobiology 11: 1-9.   DOI   ScienceOn
16 Jensen, R. C., Y. Wang, S. B. Hardin, and W. E. Stumph. 1998. The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila UsnRNA genes. Nucleic Acids Res. 26: 616-622.   DOI   ScienceOn
17 Kim, D. H., M. A. Behlke, S. D. Rose, M. S. Chang, S. Choi, and J. J. Rossi. 2005. Synthetic dsRNA dicer substrates enhance RNAi potency and efficacy. Nat. Biotech. 23: 222-226.   DOI   ScienceOn
18 Kim, E. J., S. F. Kramer, C. G. Hevert, J. J. Valdes, and W. E. Bentley. 2007. Metabolic engineering of the baculovirus expression system via inverse "shortgun" genomic analysis and RNA interference (dsRNA) increases product yield and cell longevity. Biotechnol. Bioeng. 98: 645-654.   DOI   ScienceOn
19 Kim, Y. K., K. R. Kim, D. G. Kang, S. Y. Jang, Y. H. Kim, and H. J. Cha. 2009. Suppression of ${\beta}$-N-acetylglucosaminidase in the N-glycosylation pathway for complex glycoprotein formation in Drosophila S2 cells. Glycobiology 19: 301-308.
20 Kost, T. A., J. P. Condreay, and D. L. Jarvis. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotech. 23: 567-575.   DOI   ScienceOn
21 Kramer, S. F. and W. E. Bentley. 2003. RNA interference as a metabolic engineering tool: Potential for in vivo control of protein expression in an insect larval model. Metab. Eng. 5: 183-190.   DOI   ScienceOn
22 Kulakosky, P. C., M. L. Shuler, and H. A. Wood. 1998. NGlycosylation of a baculovirus expressed recombinant glycoprotein in three insect cell lines. In Vitro Cell Dev. Biol. Anim. 34: 101-108.   DOI   ScienceOn
23 Kunkel, G. R. and D. A. Danzeiser. 1992. Formation of a template committed complex on the promoter of a gene for the U6 small nuclear RNA from the human requires multiple sequence elements, including the distal region. J. Biol. Chem. 267: 14250-14258.
24 Kunkel, G. R. and T. Pederson. 1988. Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev. 2: 196-204.   DOI   ScienceOn
25 Lobo, S. M., N. T. Hernandez, R. C. Conaway, and J. W. Conaway. 1994. Transcription of snRNA Genes by RNA Polymerase II and III, pp. 281-313. Raven Press, New York.
26 Mattaj, I. W., N. A. Dathan, H. D. Parry, P. Carbon, and A. Krol. 1988. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell 55: 435-442.   DOI   ScienceOn
27 Montgomery, M. K., S. Xu, and A. Fire. 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95: 15502- 15507.   DOI   ScienceOn
28 McNamara-Schroeder, K. J., R. F. Hennessey, G. A. Harding, R. C. Jensen, and W. E. Stumph. 2001. The Drosophila U1 and U6 gene proximal sequence elements act as important determinants of the RNA polymerase specificity of small nuclear RNA gene promoters in vitro and in vivo. J. Biol. Chem. 276: 31786-31792.   DOI   ScienceOn
29 Miyagishi, M. and K. Taira. 2002. U6 promoter-driven siRNAs with four uridine 3 overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotech. 19: 497-500.
30 Meister, G. and T. Tuschl. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343-349.   DOI   ScienceOn
31 Paddison, P. J. and G. J. Hannon. 2002. RNA interference: The new somatic cell genetics. Cancer Cell 2: 17-23.   DOI   ScienceOn
32 Paule, M. R. and R. J. White. 2000. Transcription by RNA polymerase I and III. Nucleic Acids Res. 28: 1283-1298.   DOI
33 Paul, P. J., P. D. Good, I. Winer, and D. R. Engelke. 2002. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20: 505-508.   DOI   ScienceOn
34 Reynolds, A., D. Leake, Q. Boese, S. Scaringe, W. S. Marshall, and A. Khvorova. 2004. Rational siRNA design for RNA interference. Nat. Biotech. 22: 326-330.   DOI   ScienceOn
35 Scherr, M. and M. Eder. 2007. Gene silencing by small regulatory RNA in mammalian cells. Cell Cycle 64: 444-449.
36 Schramm, L. and N. Hernandez. 2001. The RNA polymerase III to its target promoters. Genes Dev. 16: 2593-2620.
37 Tomiya, N., S. Narang, Y. C. Lee, and M. J. Betenbaugh. 2004. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj. J. 21: 343-360.   DOI
38 Siolas, D., C. Lerner, J. L. Burchard, P. S. Insley, P. J. Paddison, G. J. Hannon, and M. A. Cleary. 2005. Synthetic shRNAs as potent RNA triggers. Nat. Biotech. 23: 227-231.   DOI   ScienceOn
39 Sui, G., C. Soohoo, B. Affarel, F. Gay, Y. Shi, and W. C. Forreser. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99: 6047-6052.   DOI   ScienceOn
40 Tomiya, N., M. J. Betenbaugh, and Y. C. Lee. 2003. Humanization of lepidopteran insect cell produced glycoproteins. Acc. Chem. Res. 36: 613-620.   DOI   ScienceOn
41 Varki, A., R. Cummings, J. Fsko, H. Freeze, G. Hart, and J. Marth. 1995. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
42 Wakiyama, M., T. Matsumoto, and S. Yokoyama. 2005. Drosophila U6 promoter-driven short hairpin RNAs effectively induce RNA interference in Schneider 2 cells. Biochem. Biophys. Res. Commun. 331: 1163-1170.   DOI   ScienceOn
43 Watanabe, S., T. Kokuho, H. Takahashi, M. Takahashi, T. Kubota, and S. Inumaru. 2002. Sialyation of N-glycans on the recombinant protein expressed by a baculovirus-insect cell system under ${\beta}$-Nacetylglucosaminidase inhibition. J. Biol. Chem. 277: 5090-5093.   DOI   ScienceOn
44 Wise, T. G., D. J. Schafer, L. S. Lambeth, S. G. Tyack, M. P. Bruce, R. J. Moore, and T. J. Doran. 2007. Characterization and comparison of chicken U6 promoters for the expression of short hairpin RNAs. Anim. Biotechnol. 18: 153-162.   DOI   ScienceOn
45 Altman, F., E. Staudacher, I. B. H. Wilson, and L. Marz. 1999. Insect cells as host for the expression of recombinant glycoproteins. Glycoconj. J. 16: 109-123.   DOI   ScienceOn
46 Zamore, P. D., T. Tuschl, P. A. Sharp, and D. P. Bartel. 2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA 21 to 23 nucleotide intervals. Cell 102: 25-33.
47 Zamrod, Z., C. M. Tyree, Y. Song, and W. E. Stumph. 1993. In vitro transcription of a Drosophila U1 small nuclear RNA gene requires TATA box-binding protein and two proximal cis-acting elements with stringent spacing requirements. Mol. Cell. Biol. 13: 5918-5927.   DOI
48 Altmann, F., H. Schwihla, E. Staudacher, J. Glossl, and L. Marz. 1996. Insect cells contain an unusual membrane-bound ${\beta}$- N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem. 270: 17344-17349.