• Title/Summary/Keyword: RNA 1

Search Result 8,314, Processing Time 0.033 seconds

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh;Seongjin An;Sungchul Kim
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.40-49
    • /
    • 2024
  • Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.

Decreases in $Casz1$ mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice

  • Ji, Su-Min;Shin, Young-Bin;Park, So-Yon;Lee, Hyeon-Ju;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.40-43
    • /
    • 2012
  • Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is $CASZ1$ confirmed in both Europeans and Asians. $CASZ1$ is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of $CASZ1$ in blood pressure, we decreased $Casz1$ mRNA levels in mice by siRNA. $Casz1$ siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing $Casz1$ mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in $Casz1$ mRNA levels in the kidney on multiple siRNA injections daily. Even though $Casz1$ siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of $in$ $vivo$ siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

Ginsenoside Rh2 upregulates long noncoding RNA STXBP5-AS1 to sponge microRNA-4425 in suppressing breast cancer cell proliferation

  • Park, Jae Eun;Kim, Hyeon Woo;Yun, Sung Hwan;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.754-762
    • /
    • 2021
  • Background: Ginsenoside Rh2, a major saponin derivative in ginseng extract, is recognized for its anti-cancer activities. Compared to coding genes, studies on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) that are regulated by Rh2 in cancer cells, especially on competitive endogenous RNA (ceRNA) are sparse. Methods: LncRNAs whose promoter DNA methylation level was significantly altered by Rh2 were screened from methylation array data. The effect of STXBP5-AS1, miR-4425, and RNF217 on the proliferation and apoptosis of MCF-7 breast cancer cells was monitored in the presence of Rh2 after deregulating the corresponding gene. The ceRNA relationship between STXBP5-AS1 and miR-4425 was examined by measuring the luciferase activity of a recombinant luciferase/STXBP5-AS1 plasmid construct in the presence of mimic miR-4425. Results: Inhibition of STXBP5-AS1 decreased apoptosis but stimulated growth of the MCF-7 cells, suggesting tumor-suppressive activity of the lncRNA. MiR-4425 was identified to have a binding site on STXBP5-AS1 and proven to be downregulated by STXBP5-AS1 as well as by Rh2. In contrast to STXBP5-AS1, miR-4425 showed pro-proliferation activity by inducing a decrease in apoptosis but increased growth of the MCF-7 cells. MiR-4425 decreased luciferase activity from the luciferase/STXBP5-AS1 construct by 26%. Screening the target genes of miR-4425 and Rh2 revealed that Rh2, STXBP5-AS1, and miR-4425 consistently regulated tumor suppressor RNF217 at both the RNA and protein level. Conclusion: LncRNA STXBP5-AS1 is upregulated by Rh2 via promoter hypomethylation and acts as a ceRNA, sponging the oncogenic miR-4425. Therefore, Rh2 controls the STXBP5-AS1/miR-4425/RNF217 axis to suppress breast cancer cell growth.

Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus

  • Hartawan, Risza;Pujianto, Dwi Ari;Dharmayanti, Ni Luh Putu Indi;Soebandrio, Amin
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.24.1-24.10
    • /
    • 2022
  • Background: Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives: The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods: The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results: The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions: These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.

HisCoM-mimi: software for hierarchical structural component analysis for miRNA-mRNA integration model for binary phenotypes

  • Kim, Yongkang;Park, Taesung
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.10.1-10.3
    • /
    • 2019
  • To identify miRNA-mRNA interaction pairs associated with binary phenotypes, we propose a hierarchical structural component model for miRNA-mRNA integration (HisCoM-mimi). Information on known mRNA targets provided by TargetScan is used to perform HisCoM-mimi. However, multiple databases can be used to find miRNA-mRNA signatures with known biological information through different algorithms. To take these additional databases into account, we present our advanced application software for HisCoM-mimi for binary phenotypes. The proposed HisCoM-mimi supports both TargetScan and miRTarBase, which provides manually-verified information initially gathered by text-mining the literature. By integrating information from miRTarBase into HisCoM-mimi, a broad range of target information derived from the research literature can be analyzed. Another improvement of the new HisCoM-mimi approach is the inclusion of updated algorithms to provide the lasso and elastic-net penalties for users who want to fit a model with a smaller number of selected miRNAs and mRNAs. We expect that our HisCoM-mimi software will make advanced methods accessible to researchers who want to identify miRNA-mRNA interaction pairs related with binary phenotypes.

Curcumin modulates the apolipoprotein B mRNA editing by coordinating the expression of cytidine deamination to uridine editosome components in primary mouse hepatocytes

  • He, Pan;Tian, Nan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • Curcumin, an active ingredient of Curcuma longa L., can reduce the concentration of low-density lipoproteins in plasma, in different ways. We had first reported that curcumin exhibits hypocholesterolemic properties by improving the apolipoprotein B (apoB) mRNA editing in primary rat hepatocytes. However, the role of curcumin in the regulation of apoB mRNA editing is not clear. Thus, we investigated the effect of curcumin on the expression of multiple editing components of apoB mRNA cytidine deamination to uridine (C-to-U) editosome. Our results demonstrated that treatment with $50{\mu}M$ curcumin markedly increased the amount of edited apoB mRNA in primary mouse hepatocytes from 5.13%-8.05% to 27.63%-35.61%, and significantly elevated the levels of the core components apoB editing catalytic polypeptide-1 (APOBEC-1), apobec-1 complementation factor (ACF), and RNA-binding-motif-protein-47 (RBM47), as well as suppressed the level of the inhibitory component glycine-arginine-tyrosine-rich RNA binding protein. Moreover, the increased apoB RNA editing by $50{\mu}M$ curcumin was significantly reduced by siRNA-mediated APOBEC-1, ACF, and RBM47 knockdown. These findings suggest that curcumin modulates apoB mRNA editing by coordinating the multiple editing components of the edito-some in primary hepatocytes. Our data provided evidence for curcumin to be used therapeutically to prevent atherosclerosis.

Effects of Polyamines on Activities of Elongation Factors, Phenylalanyl-tRNA Synthetase and tRNA in Protein Biosynthesis (백 생명성에 관계하는 신장요인과 Phenylalanyl-tRNA Synthetase 및 tRNA 활성에 미치는 Polyamine의 효과)

  • Woong Seop Sim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.325-332
    • /
    • 1994
  • The effects of polyamines on the activities of elongation factors EF-1 and EF-2, phenylalanyl-tRNA synthetase, and tRNA were investigated. The activities of EF-1 and EF-2 were mostly stimulated by spermidine among three kinds of polyamines. The activities of EF-1 and EF-2 were investigated in the presence of spermidine by 230 and 181%, respectively. The activity of phenylalanyl-tRNA synthetase was slightly increased in the presence of polyamines. The effect of spermine on the synthetase was higher than that of the other polyamines. The tRNA activity in the presence fo polyamines was increased by 206% with spermidine, by 144% with spermine, and by 114% with putrescine. According to these results, it is concluded that polyamines in higher plants stimulate the protein biosynthesis by promoting the activities of elongation factors EF-1 and EF-2, aminoacyl-tRNA synthetases, and tRNAs, but the effects of polyamines on the various components for protein biosynthesis are different in according to the kind of polyamines.

  • PDF

Exosome-derived microRNA-29c Induces Apoptosis of BIU-87 Cells by Down Regulating BCL-2 and MCL-1

  • Xu, Xiang-Dong;Wu, Xiao-Hou;Fan, Yan-Ru;Tan, Bing;Quan, Zhen;Luo, Chun-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3471-3476
    • /
    • 2014
  • Background: Aberrant expression of the microRNA-29 family is associated with tumorigenesis and cancer progression. As transport carriers, tumor-derived exosomes are released into the extracellular space and regulate multiple functions of target cells. Thus, we assessed the possibility that exosomes could transport microRNA-29c as a carrier and correlations between microRNA-29c and apoptosis of bladder cancer cells. Materials and Methods: A total of 28 cancer and adjacent tissues were examined by immunohistochemistry to detect BCL-2 and MCL-1 expression. Disease was Ta-T1 in 12 patients, T2-T4 in 16, grade 1 in 8, 2 in 8 and 3 in 12. The expression of microRNA-29c in cancer tissues was detected by quantitative reverse transcriptase PCR (QRT-PCR). An adenovirus containing microRNA-29c was used to infect the BIU-87 human bladder cancer cell line. MicroRNA-29c in exosomes was measured by QRT-PCR. After BIU-87 cells were induced by exosomes-derived microRNA-29c, QRT-PCR was used to detect the level of microRNA-29c. Apoptosis was examined by flow cytometry and BCL-2 and MCL-1 mRNA expressions were assessed by reverse transcription-polymerase chain reaction. Western blotting was used to determine the protein expression of BCL-2 and MCL-1. Results: The expressions of BCL-2 and MCL-1 protein were remarkably increased in bladder carcinoma (p<0.05), but was found mainly in the basal and suprabasal layers in adjacent tissues. The expression of microRNA-29c in cancer tissues was negatively correlated with the BCL-2 and MCL-1. The expression level of microRNA-29c in exosomes and BIU-87 cells from the experiment group was higher than that in control groups (p<0.05). Exosome-derived microRNA-29c induced apoptosis (p<0.01). Although only BCL-2 was reduced at the mRNA level, both BCL-2 and MCL-1 were reduced at the protein level. Conclusions: Human bladder cancer cells infected by microRNA-29c adenovirus can transport microRNA-29c via exosomes. Moreover, exosome-derived microRNA29c induces apoptosis in bladder cancer cells by down-regulating BCL-2 and MCL-1.

High-Speed RNA Isolation Using Magnetic Oligo(dT) Beads and Lateral Magnetophoresis (올리고-dT 자성입자와 측면방향 자기영동을 이용한 초고속 RNA 추출 기술)

  • Lee, Hwan-Yong;Han, Song-I;Han, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1309-1316
    • /
    • 2011
  • This paper presents a high-speed RNA microextractor for the direct isolation of RNA from blood lysate using magnetic oligo(dT) beads. The extraction is performed through lateral magnetophoresis, which is induced by a ferromagnetic wire array inlaid. With this RNA microextractor, more than 80% of the magnetic beads could be separated at a flow rate up to 20 ml/h, and the overall extraction procedure was completed within 1 min. The absorbance ratio of RNA to protein(A260/A280) was greater than 1.7, indicating that the extraction technique yields pure RNA. The feasibility of using this technique in reverse transcription polymerase chain reaction procedures was investigated by cDNA synthesis and PCR processes. The results confirmed that the RNA microextractor is a practical device for easy, fast, and high-precision RT-PCR using minimal amounts of reagent.