• 제목/요약/키워드: RNA, small interfering

검색결과 154건 처리시간 0.067초

Ethanol Extract of Ganoderma lucidum Augments Cellular Anti-oxidant Defense through Activation of Nrf2/HO-1

  • Lee, Yoo-hwan;Kim, Jung-hee;Song, Choon-ho;Jang, Kyung-jeon;kim, Cheol-hong;Kang, Ji-Sook;Choi, Yung-hyun;Yoon, Hyun-Min
    • 대한약침학회지
    • /
    • 제19권1호
    • /
    • pp.59-69
    • /
    • 2016
  • Objectives: The mushroom Ganoderma lucidum has been widely used as a traditional herbal medicine for many years. Although several studies have focused on the anti-oxidative activity of this mushroom, the molecular mechanisms underlying its activity have not yet been clearly established. The present study investigated the cytoprotective effect of ethanol extract of Ganoderma lucidum (EGL) against oxidative stress (hydrogen peroxide, $H_2O_2$) and elucidated the underlying mechanisms in a C2C12 myoblast cell line. Methods: Oxidative stress markers were determined by using the comet assay to measure reactive oxygen species (ROS) generation and deoxyribonucleic acid (DNA) damage. Cell viability and Western blotting analyses were employed to evaluate the cellular response to EGL and $H_2O_2$ in C2C12 cells. Transfection with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific small interfering ribonucleic acid (siRNA) was conducted to understand the relationship between Nrf2 expression and $H_2O_2$-induced growth inhibition. Results: The results showed that EGL effectively inhibited $H_2O_2$-induced growth and the generation of ROS. EGL markedly suppressed $H_2O_2$-induced comet-like DNA formation and phosphorylation of histone H2AX at serine 139 ($p-{\gamma}H2AX$), a widely used marker of DNA damage, suggesting that EGL prevented $H_2O_2$-induced DNA damage. Furthermore, the EGL treatment effectively induced the expression of Nrf2, as well as heme oxygenase-1 (HO-1), with parallel phosphorylation and nuclear translocation of Nrf2 in the C2C12 myoblasts. However, zinc protoporphyrin IX, a HO-1 inhibitor, significantly abolished the protective effects of EGL against $H_2O_2$-induced accumulation of ROS and reduced cell growth. Notably, transient transfection with Nrf2-specific siRNA attenuated the cytoprotective effects and HO-1 induction by EGL, indicating that EGL induced the expression of HO-1 in an Nrf2-dependent manner. Conclusion: Collectively, these results demonstrate that EGL augments the cellular anti-oxidant defense capacity through activation of Nrf2/HO-1, thereby protecting C2C12 myoblasts from $H_2O_2$-induced oxidative cytotoxicity.

Caspase 활성 및 Bid의 발현 저하를 통한 단백질 생성 억제제인 anisomycin의 인체간암세포에서 TRAIL 매개 apoptosis 유발의 활성화 (Anisomycin, an Inhibitor of Protein Synthesis, Overcomes TRAIL Resistance in Human Hepatocarcinoma Cells via Caspases Activation and Bid Downregulation)

  • 김성윤;박철;홍수현;최영현
    • 생명과학회지
    • /
    • 제24권7호
    • /
    • pp.769-776
    • /
    • 2014
  • Anisomycin은 Streptomyces griseolus에 의하여 생성되는 항생제의 일종으로 flagecidin으로도 알려져 있으며, ribosomal 28S subunit에 결합함으로서 단백질의 생성을 억제하는 것으로 알려져 있다. TRAIL은 ligand로서의 death receptor와의 결합을 통하여 세포의 apoptosis를 유발하는 것으로 알려져 있으나, 많은 암세포에서는 이미 TRAIL에 대한 저항성을 획득하여 TRAIL 유도 apoptosis를 회피하는 능력을 가지고 있다. 본 연구에서는 TRAIL 저항성 Hep3B 간암세포를 대상으로 anisomycin이 TRAIL 매개 apoptosis를 촉진 시킬 수 있는지의 여부를 조사하였다. 본 연구의 결과에 의하면, 단독 처리 조건에서 Hep3B 세포의 증식에 유의적인 영향을 미치는 않았던 anisomycin과 TRAIL의 동시 처리는 anisomycin 처리 농도 의존적으로 세포의 증식을 시켰으며, 이는 caspase 활성화를 통한 apoptosis 유발 증가와 연관성이 있음을 확인하였다. 특히 siRNA를 이용한 Hep3B 세포의 인위적인 Bid 발현의 차단은 anisomycin과 TRAIL 동시 처리군에 비하여 apoptosis 유발능이 더욱 증대시켜 TRAIL 연관 Bid의 truncation을 통한 미토콘드리아 의존적 apoptosis 유발 과정을 anisomycin이 효과적으로 촉진시켰음을 보여주었다. 따라서 본 연구의 결과는 anisomycin과 TRAIL의 동시 처리는 TRAIL 저항성 암세포의 사멸을 촉진시킬 수 있는 효과적인 방법임을 의미한다.

한방이화주 주박 추출물에 의한 암세포 항성장 및 세포사멸 기전 연구 (Anti-proliferative and Pro-apoptotic Effects by Lees Extracts of Ehwa Makgeolli Containing Oriental Herbs)

  • 권민정;이승훈;정정욱;손호용;신우창;김종식
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.241-246
    • /
    • 2016
  • 본 연구에서는 한국 전통 막걸리 중 하나인 한방 이화주의 주박으로부터 에탄올 추출물과 그것의 순차적인 유기용매 분획물을 획득하고, 이들 시료들이 인간 대장암 세포인 HCT116 세포주의 cell viability와 pro-apoptotic 유전자인 ATF-3와 NAG-1의 발현에 미치는 영향을 연구하였다. 처리된 유기용매 시료 가운데 KSD-E3-2 분획물 (hexane 분획물)과 KSD-E3-3 분획물 (ethyl acetate 분획물)의 처리에 의해 현저하게 세포생존율이 감소하였으며, 두 분획물에 의해 농도의존적으로 세포 생존율이 감소하였다. 또한, 두 분획물의 처리에 의해 pro-apoptotic 유전자인 NAG-1과 ATF-3의 유전자와 단백질의 발현이 증가함을 확인하였다. 특히, KSD-E3-3 분획물 0.1 mg/ml의 처리에 의해 NAG-1 단백질의 발현이 현저하게 증가하였으며, 또한 apoptosis의 지표인 PARP cleavage가 관찰되었다. 이러한 KSD-E3-3 분획물에 의해 유도된 apoptosis는 NAG-1 siRNA transfection에 의해 회복됨을 확인하였다. 따라서, KSD-E3-3 분획물에 의한 NAG-1 단백질의 발현증가와 apoptosis 간의 직접적인 관련성이 있음을 시사한다. 종합적으로 본 연구 결과는 한방이화주 주박에 함유된 생리활성물질의 암세포 항 성장 활성 및 apoptosis기전을 이해하는데 도움을 줄 것으로 생각된다.

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling;Liu, Xin-Tong;Bao, Yi-Ni;Yan, Bing;Jiang, Nan;Yu, Bo-Yang;Liu, Ji-Hua
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.6.1-6.12
    • /
    • 2018
  • Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

비소세포폐암 세포주에서 Uteroglobin Transduction이 COX-2 및 IDO의 발현에 미치는 영향 (Expression of COX-2 and IDO by Uteroglobin Transduction in NSCLC Cell Lines)

  • 박근민;이상민;임재준;양석철;유철규;이춘택;한성구;심영수;김영환
    • Tuberculosis and Respiratory Diseases
    • /
    • 제66권4호
    • /
    • pp.274-279
    • /
    • 2009
  • 연구배경: Uteroglobin (UG)은 폐를 비롯한 우리 몸의 대부분의 표피세포에서 생성되는 면역조절능을 가진 분비단백이다. UG의 과발현은 cyclooxygenase (COX)-2의 발현의 감소 및 암세포의 성장억제와 관련이 있다. Indoleamine 2,3-dioxygenase (IDO)는 kynurenine pathway를 통해 tryptophan을 이화시키는 효소로서, 국소적으로 tryptopha을 고갈시키고 tryptophan 대사물을 생성 함으로써 T 세포의 면역반응을 억제시키는 데 기여한다. 방 법: 본 연구에서는 여러 비소세포폐암 세포주, 특히 A549에서 COX-2와 IDO의 발현양상 및 UG transduction 이 COX-2 및 IDO의 발현에 미치는 영향을 살펴보았다. 결 과: A549와 H460에서 구조적으로 COX-2와 IDO가 모두 발현되었고, COX-2 및 IDO의 발현은 UG transduction에 의해 감소되었다. A549에 IFN-$\gamma$를 투여했을때 COX-2 및 IDO의 발현이 약간 증가하였고, 이는 UGtransduction 시행 후 다시 감소하였다. 그러나, A549에 UG transduction 시행하여 감소된 COX-2, IDO의 발현은 IFN-$\gamma$ 투여 후에도 증가하지 않았다. A549 COX-2 sense와 A549 COX-2 anti-sense (siRNA 감염) 세포주 모두에서 COX-2의 발현여부와 상관없이 IDO가 발현되었고, UG transduction으로 인해 IDO의 발현이 감소하였다. 결 론: 이러한 결과는 UG의 세포성장억제 기능이 COX-2를 통한 기전과는 독립적으로 IDO의 면역관용 기전과 관련될 가능성이 있음을 시사한다.

Expression of Nuclear Factor Erythroid 2 Protein in Malignant Cutaneous Tumors

  • Choi, Chang Yong;Kim, Jin Young;Wee, Seo Yeong;Lee, Jang Hyun;Nam, Doo Hyun;Kim, Chul Han;Cho, Moon Kyun;Lee, Yoon Jin;Nam, Hae Seon;Lee, Sang Han;Ch, Sung Woo
    • Archives of Plastic Surgery
    • /
    • 제41권6호
    • /
    • pp.654-660
    • /
    • 2014
  • Background Reactive oxygen species (ROS) damages cell molecules, and modifies cell signaling. The nuclear factor E2-related factor (Nrf2) is a critical transcription regulator, which protects cells against oxidative damage. Nrf2 expression is increased in a large number of cancers. However, little information has been reported regarding the expression of Nrf2 in skin cancers. Hence, we explored the expression of Nrf2 protein in skin cancers. Methods The Nrf2 protein expression in 24 specimens, including 6 malignant melanomas (MM), 6 squamous cell carcinomas (SCC), 6 basal cell carcinomas (BCC), and 6 normal skin tissues, was evaluated by western blotting. Immunohistochemical staining was performed. The expression of Kelch-like ECH-associated protein 1 (Keap1), the key regulator of Nrf2, was also analyzed by western blotting. Results Small interfering RNA transfection to the melanoma cell line G361 confirmed that an approximately 66 kDa band was the true Nrf2 band. The western blot revealed that the Nrf2 protein was definitely expressed in normal skin tissues, but the Nrf2 expression was decreased in MM, SCC, and BCC. Immunohistochemical examination showed that expression of Nrf2 was decreased in all skin cancer tissues compared to the normal skin tissues. Keap1 was not expressed in all malignant skin tumors and normal skin tissues by western blot. Conclusions ROS was increased in various types of cancers which proteins were highly expressed or underexpressed. This study demonstrated that the expression of Nrf2 protein was down-regulated in human malignant skin tumors. We suggest that decreased expression of Nrf2 is related to skin cancers.

Down-regulation of Phosphoglucose Isomerase/Autocrine Motility Factor Enhances Gensenoside Rh2 Pharmacological Action on Leukemia KG1α Cells

  • You, Zhi-Mei;Zhao, Liang;Xia, Jing;Wei, Qiang;Liu, Yu-Min;Liu, Xiao-Yan;Chen, Di-Long;Li, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1099-1104
    • /
    • 2014
  • Aims and Background: Ginsenoside Rh2, which exerts the potent anticancer action both in vitro and in vivo, is one of the most well characterized ginsenosides extracted from ginseng. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between ginsenoside Rh2 and phosphoglucose isomerase/autocrine motility factor (PGI/AMF). Methods: $KG1{\alpha}$, a leukemia cell line highly expressing PGI/AMF was assessed by western blot analysis and reverse transcription- PCR (RT-PCR) assay after transfection of a small interfering (si)-RNA to silence PGI/AMF. The effect of PGI/AMF on proliferation was measured by typan blue assay and antibody array. A cell counting kit (CCK)-8 and flow cytometry (FCM) were adopted to investigate the effects of Rh2 on PGI/AMF. The relationships between PGI/AMF and Rh2 associated with Akt, mTOR, Raptor, Rag were detected by western blot analysis. Results: KG1${\alpha}$ cells expressed PGI/AMF and its down-regulation significantly inhibited proliferation. The antibody array indicated that the probable mechanism was reduced expression of PARP, State1, SAPK/JNK and Erk1/2, while those of PRAS40 and p38 were up-regulated. Silencing of PGI/AMF enhanced the sensibility of $KG1{\alpha}$ to Rh2 by suppressing the expression of mTOR, Raptor and Akt. Conclusion: These results suggested that ginsenoside Rh2 suppressed the proliferation of $KG1{\alpha}$, the same as down-regulation of PGI/AMF. Down-regulation of PGI/AMF enhanced the pharmacological effects of ginsenoside Rh2 on KG1${\alpha}$ by reducing Akt/mTOR signaling.

Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells

  • Bae, Yun-Hee;Ryu, Jong Hyo;Park, Hyun-Joo;Kim, Kwang Rok;Wee, Hee-Jun;Lee, Ok-Hee;Jang, Hye-Ock;Bae, Moon-Kyoung;Kim, Kyu-Won;Bae, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.291-297
    • /
    • 2013
  • Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.

U2OS 세포에서 prostaglandin A2에 의한 apoptosis는 heme oxygenase-1에 의하여 저해되지 않는다 (Prostaglandin A2-induced Apoptosis is Not Inhibited by Heme Oygenase-1 in U2OS Cells)

  • 고경원;이선영;안지현;김재택;김인경;김호식
    • 생명과학회지
    • /
    • 제18권11호
    • /
    • pp.1485-1492
    • /
    • 2008
  • Prostaglandin $A_2$ ($PGA_2$)는 사람 골육종 세포인 U2OS 세포주에서 apoptosis와 heme oxygenase (HO)-1의 발현을 함께 유도하였다. $PGA_2$에 의한 apoptosis는 HO-1의 과도한 발현이나 HO-1에 대한 small interfering RNA에 의한 발현저하에 의하여 변동되지 않았으나 $H_2O_2$에 의한 세포사망은 HO-1의 발현 수준에 반비례하여 변동되었다. 또한 thiol antioxidant인 N-acetyl-L-cysteine (NAC)은 $PGA_2$에 의한 세포사망과 HO-1의 발현 증가를 모두 차단하였지만, non-thiol antioxidant인 butylated hydroxyanisole (BHA)과 ascorbic acid는 세포사망과 HO-1의 발현 유도를 차단하지 않았다. 이와 같은 결과들은 $PGA_2$는 산화성 손상에 의해서가 아니라 $PGA_2$의 thiol-reactivity에 의하여 apoptosis와 HO-1의 발현을 유도하며, HO-1의 발현은 $PGA_2$에 의한 apoptosis와는 독립적인 현상이거나 기능적으로 apoptosis 유도의 하부에 위치하고 apoptosis의 진행에는 기여하지 않을 것이라는 것을 시사해 준다.