DOI QR코드

DOI QR Code

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling (Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Liu, Xin-Tong (School of Life Science and Technology, China Pharmaceutical University) ;
  • Bao, Yi-Ni (Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Yan, Bing (Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Jiang, Nan (Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University) ;
  • Yu, Bo-Yang (State Key Laboratory of Natural Medicines, China Pharmaceutical University) ;
  • Liu, Ji-Hua (Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University)
  • Received : 2018.05.05
  • Accepted : 2018.08.27
  • Published : 2018.11.30

Abstract

Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.

Keywords

Acknowledgement

Supported by : China Postdoctoral Science Foundation

References

  1. Kreek, M. J. Drug addictions. Molecular and cellular endpoints. Ann. N. Y. Acad. Sci. 937, 27-49 (2001).
  2. Inturrisi, C. E. Clinical pharmacology of opioids for pain. Clin. J. Pain. 18, S3-S13 (2002). https://doi.org/10.1097/00002508-200207001-00002
  3. Hutchinson, M. R. et al. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 63, 772-810 (2011). https://doi.org/10.1124/pr.110.004135
  4. Williams, J. T. et al. Regulation of ${\mu}$-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65, 223-254 (2013). https://doi.org/10.1124/pr.112.005942
  5. He, S. Q. et al. Facilitation of mu-opioid receptor activity by preventing deltaopioid receptor-mediated codegradation. Neuron 69, 120-131 (2011). https://doi.org/10.1016/j.neuron.2010.12.001
  6. Melik Parsadaniantz, S., Rivat, C., Rostene, W. & Reaux-Le Goazigo, A. Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat. Rev. Neurosci. 16, 69-78 (2015).
  7. Zhou, D., Chen, M. L., Zhang, Y. Q. & Zhao, Z. Q. Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J. Neurosci. 30, 8042-8047 (2010). https://doi.org/10.1523/JNEUROSCI.5377-09.2010
  8. Ji, R. R. Targeting microglial purinergic signaling to improve morphine analgesia. Pain 150, 377-378 (2010). https://doi.org/10.1016/j.pain.2010.06.010
  9. Shen, N. et al. A novel role of spinal astrocytic connexin 43: mediating morphine antinociceptive tolerance by activation of NMDA receptors and inhibition of glutamate transporter-1 in rats. CNS Neurosci. Ther. 20, 728-736 (2014). https://doi.org/10.1111/cns.12244
  10. Luo, C., Kuner, T. & Kuner, R. Synaptic plasticity in pathological pain. Trends Neurosci. 37, 343-355 (2014). https://doi.org/10.1016/j.tins.2014.04.002
  11. Wei, H., Viisanen, H. & Pertovaara, A. Descending modulation of neuropathic hypersensitivity by dopamine D2 receptors in or adjacent to the hypothalamic A11 cell group. Pharmacol. Res. 59, 355-363 (2009). https://doi.org/10.1016/j.phrs.2009.01.001
  12. Sheng, H. Y., Qu, C. L., Huo, F. Q., Du, J. Q. & Tang, J. S. D2-like but not D1-like dopamine receptors are involved in the ventrolateral orbital cortex-induced antinociception: a GABAergic modulation mechanism. Exp. Neurol. 215, 128-134 (2009). https://doi.org/10.1016/j.expneurol.2008.09.018
  13. Shamsizadeh, A. et al. Involvement of dopamine receptors within the dorsal hippocampus in suppression of the formalin-induced orofacial pain. Pharmacol. Biochem. Behav. 114-115, 37-42 (2013). https://doi.org/10.1016/j.pbb.2013.10.029
  14. King, M. A., Bradshaw, S., Chang, A. H., Pintar, J. E. & Pasternak, G. W. Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system. J. Neurosci. 21, 7788-7792 (2001). https://doi.org/10.1523/JNEUROSCI.21-19-07788.2001
  15. Zarrindast, M. R., Dinkoub, Z., Homayoun, H., Bakhtiarian, A. & Khavandgar, S. Dopamine receptor mechanism (s) and morphine tolerance in mice. J. Psychopharmacol. 16, 261-266 (2002). https://doi.org/10.1177/026988110201600312
  16. Ozdemir, E., Bagcivan, I. & Gursoy, S. Role of D(1)/D(2) dopamin receptors antagonist perphenazine in morphine analgesia and tolerance in rats. Bosn. J. Basic. Med. Sci. 13, 119-125 (2013). https://doi.org/10.17305/bjbms.2013.2394
  17. Verma, A. & Kulkarni, S. Role of D 1/D 2 dopamine and N-methyl-d-aspartate (NMDA) receptors in morphine tolerance and dependence in mice. Eur. Neuropsychopharm. 5, 81-87 (1995). https://doi.org/10.1016/0924-977X(94)00140-7
  18. Dai, W. L. et al. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord. Sci. Rep. 6, 38746 (2016). https://doi.org/10.1038/srep38746
  19. Dai, W. L. et al. Simultaneous inhibition of NMDA and mGlu1/5 receptors by levo-corydalmine in rat spinal cord attenuates bone cancer pain. Int. J. Cancer 141, 805-815 (2017). https://doi.org/10.1002/ijc.30780
  20. Xiao, W. et al. Characterization of human metabolism and disposition of levotetrahydropalmatine: qualitative and quantitative determination of oxidative and conjugated metabolites. J. Pharm. Biomed. Anal. 128, 371-381 (2016). https://doi.org/10.1016/j.jpba.2016.06.015
  21. Parraga, J. et al. 2,3,9- and 2,3,11-trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur. J. Med. Chem. 68, 150-166 (2013). https://doi.org/10.1016/j.ejmech.2013.07.036
  22. Sun, H. et al. Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D(1), D(2) and serotonin 5-HT(1A) multi-action profile. Bioorg. Med Chem. 21, 856-868 (2013). https://doi.org/10.1016/j.bmc.2012.12.016
  23. Njoo, C., Heinl, C. & Kuner, R. In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice. J. Vis. Exp. 22, e51229 (2014).
  24. Gong, N., Fan, H., Ma, A. N., Xiao, Q. & Wang, Y. X. Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology 84, 31-45 (2014). https://doi.org/10.1016/j.neuropharm.2014.04.007
  25. Stone, L. S., MacMillan, L. B., Kitto, K. F., Limbird, L. E. & Wilcox, G. L. The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy. J. Neurosci. 17, 7157-7165 (1997). https://doi.org/10.1523/JNEUROSCI.17-18-07157.1997
  26. Bradman, M. J., Ferrini, F., Salio, C. & Merighi, A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: towards a rational method. J. Neurosci. Methods 255, 92-103 (2015). https://doi.org/10.1016/j.jneumeth.2015.08.010
  27. Wu, X. F. et al. Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord. Pain 152, 2605-2615 (2011). https://doi.org/10.1016/j.pain.2011.08.003
  28. Zhang, Y. et al. A novel analgesic isolated from a traditional Chinese medicine. Curr. Biol. 24, 117-123 (2014). https://doi.org/10.1016/j.cub.2013.11.039
  29. Matthes, H. W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819-823 (1996). https://doi.org/10.1038/383819a0
  30. Le Merrer, J., Becker, J. A., Befort, K. & Kieffer, B. L. Reward processing by the opioid system in the brain. Physiol. Rev. 89, 1379-1412 (2009). https://doi.org/10.1152/physrev.00005.2009
  31. Dang, V. C., Chieng, B., Azriel, Y. & Christie, M. J. Cellular morphine tolerance produced by betaarrestin-2-dependent impairment of mu-opioid receptor resensitization. J. Neurosci. 31, 7122-7130 (2011). https://doi.org/10.1523/JNEUROSCI.5999-10.2011
  32. Bohn, L. M. et al. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286, 2495-2498 (1999). https://doi.org/10.1126/science.286.5449.2495
  33. Raehal, K. M. & Bohn, L. M. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology 60, 58-65 (2011). https://doi.org/10.1016/j.neuropharm.2010.08.003
  34. Klewe, I. V. et al. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology 54, 1215-1222 (2008). https://doi.org/10.1016/j.neuropharm.2008.03.015
  35. Basu, D. et al. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization. PLoS One 8, e70736 (2013). https://doi.org/10.1371/journal.pone.0070736
  36. Wang, J. et al. miR-365 targets beta-arrestin 2 to reverse morphine tolerance in rats. Sci. Rep. 6, 38285 (2016). https://doi.org/10.1038/srep38285
  37. Xu, J. T. et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J. Clin. Invest. 124, 592-603 (2014). https://doi.org/10.1172/JCI70236
  38. Khan, S. M. et al. The expanding roles of Gbetagamma subunits in G proteincoupled receptor signaling and drug action. Pharmacol. Rev. 65, 545-577 (2013). https://doi.org/10.1124/pr.111.005603
  39. Nair, V. D. & Sealfon, S. C. Agonist-specific transactivation of phosphoinositide 3-kinase signaling pathway mediated by the dopamine D2 receptor. J. Biol. Chem. 278, 47053-47061 (2003). https://doi.org/10.1074/jbc.M303364200
  40. Chen, Y. & Sommer, C. The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol. Neurobiol. 40, 101-107 (2009). https://doi.org/10.1007/s12035-009-8074-z
  41. Steelman, L. S. et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189-218 (2004). https://doi.org/10.1038/sj.leu.2403241
  42. Narkar, V. A., Hussain, T., Pedemonte, C. & Lokhandwala, M. F. Dopamine D(2) receptor activation causes mitogenesis via p44/42 mitogen-activated protein kinase in opossum kidney cells. J. Am. Soc. Nephrol. 12, 1844-1852 (2001).
  43. Advokat, C. Tolerance to the antinociceptive effect of morphine in spinally transected rats. Behav. Neurosci. 103, 1091-1098 (1989). https://doi.org/10.1037/0735-7044.103.5.1091
  44. Lai, E. C., Hsieh, C. Y., Kao Yang, Y. H. & Lin, S. J. Detecting potential adverse reactions of sulpiride in schizophrenic patients by prescription sequence symmetry analysis. PLoS One 9, e89795 (2014). https://doi.org/10.1371/journal.pone.0089795
  45. Noori-Daloii, M. R. et al. Use of siRNA in knocking down of dopamine receptors, a possible therapeutic option in neuropsychiatric disorders. Mol. Biol. Rep. 39, 2003-2010 (2012). https://doi.org/10.1007/s11033-011-0947-3
  46. Hu, Y. et al. Levo-corydalmine alleviates neuropathic cancer pain induced by tumor compression via the CCL2/CCR2 pathway. Molecules 22, 937 (2017). https://doi.org/10.3390/molecules22060937
  47. Zhou, L. et al. Levo-corydalmine alleviates vincristine-induced neuropathic pain in mice by inhibiting an NF-kappa B-dependent CXCL1/CXCR2 signaling pathway. Neuropharmacology 135, 34-47 (2018). https://doi.org/10.1016/j.neuropharm.2018.03.004
  48. Trescot, A. M., Datta, S., Lee, M. & Hansen, H. Opioid pharmacology. Pain Physician 11, S133-S153 (2008).
  49. Yang, C. H. et al. Antinociceptive potentiation and attenuation of tolerance by intrathecal beta-arrestin 2 small interfering RNA in rats. Br. J. Anaesth. 107, 774-781 (2011). https://doi.org/10.1093/bja/aer291
  50. Nair, V. D., Olanow, C. W. & Sealfon, S. C. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines. Biochem. J. 373, 25-32 (2003). https://doi.org/10.1042/bj20030017
  51. Beaulieu, J. M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182-217 (2011). https://doi.org/10.1124/pr.110.002642
  52. Tian, Y. et al. Early single aspirin-triggered Lipoxin blocked morphine antinociception tolerance through inhibiting NALP1 inflammasome: involvement of PI3k/Akt signaling pathway. Brain Behav. Immun. 50, 63-77 (2015). https://doi.org/10.1016/j.bbi.2015.06.016
  53. Eidson, L. N. & Murphy, A. Z. Persistent peripheral inflammation attenuates morphine-induced periaqueductal gray glial cell activation and analgesic tolerance in the male rat. J. Pain 14, 393-404 (2013). https://doi.org/10.1016/j.jpain.2012.12.010
  54. Ferrini, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl-homeostasis. Nat. Neurosci. 16, 183-192 (2013). https://doi.org/10.1038/nn.3295
  55. Von Willebrand, M. et al. Inhibition of phosphatidylinositol 3-kinase blocks T cell antigen receptor/CD3-induced activation of the mitogen-activated kinase Erk2. Eur. J. Biochem. 235, 828-835 (1996). https://doi.org/10.1111/j.1432-1033.1996.00828.x
  56. Cross, D. A. E. et al. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle Cell Line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303, 21-26 (1994). https://doi.org/10.1042/bj3030021
  57. Conway, A. M., Rakhit, S., Pyne, S. & Pyne, N. J. Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem. J. 337, 171-177 (1999). https://doi.org/10.1042/bj3370171
  58. Ferby, I. M., Waga, I., Hoshino, M., Kume, K. & Shimizu, T. Wortmannin inhibits mitogen-activated protein kinase activation by platelet-activating factor through a mechanism independent of p85/p110-type phosphatidylinositol 3-kinase. J. Biol. Chem. 271, 11684-11688 (1996). https://doi.org/10.1074/jbc.271.20.11684

Cited by

  1. Heterodimerization of Mu Opioid Receptor Protomer with Dopamine D2 Receptor Modulates Agonist-Induced Internalization of Mu Opioid Receptor vol.9, pp.8, 2019, https://doi.org/10.3390/biom9080368
  2. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1 vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.00082
  3. Synthesis and Biological Characterization of Cyclic Disulfide-Containing Peptide Analogs of the Multifunctional Opioid/Neuropeptide FF Receptor Agonists That Produce Long-Lasting and Nontolerant Antin vol.63, pp.24, 2018, https://doi.org/10.1021/acs.jmedchem.0c01367
  4. Electroacupuncture Attenuates Morphine Tolerance in Rats with Bone Cancer Pain by Inhibiting PI3K/Akt/JNK1/2 Signaling Pathway in the Spinal Dorsal Horn vol.20, pp.None, 2018, https://doi.org/10.1177/1534735421995237
  5. The dopamine D1-D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury vol.53, pp.2, 2018, https://doi.org/10.1038/s12276-021-00563-5
  6. Unconditioned and learned morphine tolerance influence hippocampal-dependent short-term memory and the subjacent expression of GABA-A receptor alpha subunits vol.16, pp.9, 2021, https://doi.org/10.1371/journal.pone.0253902
  7. Melatonin attenuates morphine‐induced conditioned place preference in Wistar rats vol.11, pp.12, 2021, https://doi.org/10.1002/brb3.2397