• Title/Summary/Keyword: RMSE (Root Mean Square Error)

Search Result 665, Processing Time 0.029 seconds

Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images (Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정)

  • Son, Moobeen;Chung, Jeehun;Lee, Yonggwan;Woo, Soyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

Estimation of spatiotemporal soil moisture distribution for Yongdam-dam watershed using Sentinel-1 C-band Synthetic Aperture Radar images (Sentinel-1 C-band SAR 영상을 이용한 용담댐 유역의 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.162-162
    • /
    • 2020
  • 토양수분은 TDR(Time Domain Reflectometry)이나 Tensiometer 등의 장비를 이용하여 측정을 시행하고 있으나, 이를 위해서는 많은 인력과 경제적 자원이 소비될 뿐만 아니라 시공간적으로 측정할 수 있는 범위에 한계가 있다. 지상 관측의 대안으로 MIRAS(Microwave Imaging Radiometer with Aperture Synthesis)나 SMAP(Soil Moisture Active Passive), AMSR2(Advanced Microwave Scanning Radiometer 2) 등의 수동 마이크로파 위성 센서를 이용한 공간 토양수분 관측이 수행되었으나, 낮은 공간 해상도(9~36km)는 지역 규모의 토양수분 분포를 나타내기 충분하지 않고, 높은 불확실성을 내포하고 있다. 본 연구에서는 금강 상류의 용담댐 유역(930.0㎢)을 대상으로 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 영상을 이용한 토지 피복 및 토양 속성을 고려한 10m 해상도의 토양수분 산출을 수행하였다. 용담댐 유역은 산림 79.7%, 논 9.0%, 밭 5.4%, 주거지 2.9%의 토지 피복 비율을 가지며 토양은 사양토(66.6%)와 양토(20.9%)가 우세하다. Sentinel-1 C-band SAR 영상은 SeNtinel Application Platform(SNAP)을 이용하여 전처리 후, 후방산란계수로 변환하였다. 토양수분 알고리즘은 TU-Wien change detection algorithm과 Regression model을 활용하였고, 검증을 위한 실측 토양수분 자료는 한국수자원공사(K-water)에서 제공하는 5년(2014~2018)간의 토양수분 관측자료를 이용하였다. 산출된 토양수분은 결정계수(Coefficient of determination, R2) 및 평균제곱근오차(Root Mean Square Error, RMSE)를 이용하여 실측 토양수분과 비교하였다. Sentinel-1 C-band SAR 영상을 이용한 고해상도의 토양수분 산출은 토지 피복 및 토양 속성을 고려한 지역 규모의 공간 토양수분 분포 및 시간적 변화를 표현 가능할 것으로 판단된다.

  • PDF

Assessment of water supply stability for Boryeong dam using future RCP climate change scenarios (RCP 기후변화 시나리오를 이용한 보령댐의 미래 용수공급 안정성 평가)

  • Kim, Wonjin;Kim, Jinuk;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.43-43
    • /
    • 2020
  • 보령댐은 충남 서부지역 8개 시·군에 생활용수와 공업용수를 공급하고 있는 중요한 수원으로 최근 우리나라에서 발생한 연속적인 가뭄으로 2015년에는 저수율이 7.5 %까지 감소하여 제한급수가 시행되었다. 본 연구에서는 가뭄으로 인한 물 공급 부족에 취약함을 보인 보령댐 유역(297.4 ㎢)을 대상으로 SWAT(Soil and Water Assessment Tool) 모델과 RCP(Representative Concentration Pathways) 시나리오를 활용하여 극한 기후변화 사상이 반영된 보령댐의 내한능력을 평가하였다. SWAT 모형을 활용하여 보령댐의 물수지를 모의하기 위하여 보령댐의 실측 유출량, 저수량, 방류량으로 보령댐 유입량과 저수량을 보정(2002~2004) 및 검정(2005~2007)하였으며, 실측 저수량을 기반으로 미래 댐 운영을 모의하였다. 검·보정 결과, 댐 유입량과 저수량의 PBIAS(%)는 -0.04, -0.09, NSE(Nash and Sutcliffe Efficiency)는 0.52, 0.96, RMSE(Root Mean Square Error)는 1.80 mm/day, 0.67 × 106㎥로 분석되어 신뢰성 있는 모의 결과를 보였다. 보정된 SWAT 모형으로 가뭄 사상이 반영된 기후변화를 모의하기 위하여 APCC의 26개 CMIP5 GCM 시나리오를 SPI (Standardized Precipitation Index)와 연속 이론(Runs theory)으로 분석하여 6개의 극한 가뭄 시나리오 (RCP 4.5, 8.5 CMCC-CM, INM-CM4, IPSL-CM5A-MR)를 선정하였으며, 선정된 시나리오를 모형에 적용하여 가뭄 사상을 반영한 보령댐의 미래 내한능력을 평가하였다. 내한능력평가 및 분석 기간은 Historical(1980~1999; 1990s), Present(2000~2019; 2010s), 그리고 미래 기간 (2020~2039; 2030s, 2040~2059; 2050s, 2060~2079; 2070s, 2080~2099; 2090s)으로 나누었으며, 취약성(Reliability), 회복성(Resilience), 위험성(Vulnerability), 세 가지 지표로 내한능력 평가를 수행하였다. 평가 결과, 미래 취약성은 2050s IPSL-CM5A-MR 시나리오에서 0.803까지 감소하였으며, 회복성과 위험성은 2070s IPSL-CM5A-MR 시나리오에서 0.003, 3,567.6 × 106㎥까지 감소하였다.

  • PDF

Object Tracking Using Adaptive Scale Factor Neural Network (적응형 스케일조절 신경망을 이용한 객체 위치 추적)

  • Sun-Bae Park;Do-Sik Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.522-527
    • /
    • 2022
  • Object tracking is a field of signal processing that sequentially tracks the location of an object based on the previous-time location estimations and the present-time observation data. In this paper, we propose an adaptive scaling neural network that can track and adjust the scale of the input data with three recursive neural network (RNN) submodules. To evaluate object tracking performance, we compare the proposed system with the Kalman filter and the maximum likelihood object tracking scheme under an one-dimensional object movement model in which the object moves with piecewise constant acceleration. We show that the proposed scheme is generally better, in terms of root mean square error (RMSE) performance, than maximum likelihood scheme and Kalman filter and that the performance gaps grow with increased observation noise.

Feasibility of the Lapse Rate Prediction at an Hourly Time Interval (기온감률의 일중 경시변화 예측 가능성)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • Temperature lapse rate within the planetary boundary layer shows a diurnal cycle with a substantial variation. The widely-used lapse rate value for the standard atmosphere may result in unaffordable errors if used in interpolating hourly temperature in complex terrain. We propose a simple method for estimating hourly lapse rate and evaluate whether this scheme is better than the conventional method using the standard lapse rate. A standard curve for lapse rate based on the diurnal course of temperature was drawn using upper air temperature for 1000hPa and 925hPa standard pressure levels. It was modulated by the hourly sky condition (amount of clouds). In order to test the reliability of this method, hourly lapse rates for the 500-600m layer over Daegwallyeong site were estimated by this method and compared with the measured values by an ultrasonic temperature profiler. Results showed the mean error $-0.0001^{\circ}C/m$ and the root mean square error $0.0024^{\circ}C/m$ for this vertical profile experiment. An additional experiment was carried out to test if this method is applicable for the mountain slope lapse rate. Hourly lapse rates for the 313-401m slope range in a complex watershed ('Hadong Watermark 2') were estimated by this method and compared with the observations. We found this method useful in describing diurnal cycle and variation of the mountain slope lapse rate over a complex terrain despite larger error compared with the vertical profile experiment.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area (수도권지역의 지상기반 원격탐사자료를 이용한 지표면 태양에너지 산출)

  • Jee, Joon-Bum;Min, Jae-Sik;Lee, Hankyung;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.228-240
    • /
    • 2018
  • Solar energy is calculated using meteorological (14 station), ceilometer (2 station) and microwave radiometer (MWR, 7 station)) data observed from the Weather Information Service Engine (WISE) on the Seoul metropolitan area. The cloud optical thickness and the cloud fraction are calculated using the back-scattering coefficient (BSC) of the ceilometer and liquid water path of the MWR. The solar energy on the surface is calculated using solar radiation model with cloud fraction from the ceilometer and the MWR. The estimated solar energy is underestimated compared to observations both at Jungnang and Gwanghwamun stations. In linear regression analysis, the slope is less than 0.8 and the bias is negative which is less than $-20W/m^2$. The estimated solar energy using MWR is more improved (i.e., deterministic coefficient (average $R^2=0.8$) and Root Mean Square Error (average $RMSE=110W/m^2$)) than when using ceilometer. The monthly cloud fraction and solar energy calculated by ceilometer is greater than 0.09 and lower than $50W/m^2$ compared to MWR. While there is a difference depending on the locations, RMSE of estimated solar radiation is large over $50W/m^2$ in July and September compared to other months. As a result, the estimation of a daily accumulated solar radiation shows the highest correlation at Gwanghwamun ($R^2=0.80$, RMSE=2.87 MJ/day) station and the lowest correlation at Gooro ($R^2=0.63$, RMSE=4.77 MJ/day) station.

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.