• Title/Summary/Keyword: RMS current

Search Result 344, Processing Time 0.023 seconds

Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics (Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상)

  • Son, Hee-Geon;Yang, Jung-Il;Cho, Dong-Kyu;Woo, Sang-Hyun;Lee, Dong-Hee;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.

Temporal and Spatial Variations of the Cold Waters Occurring in the Eastern Coast of the Korean Peninsula in Summer Season (하계 동해연안역에서 발생하는 냉수역의 시공간적 변동 특성)

  • SUH Young Sang;JANG Lee-Hyun;HWANG Jae Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • Daily time series of longshore wind at 8 stations, sea surface temperature (SST) at 11 stations in the eastern coast of the Korean peninsula during $1983\~1997$ and the NOAA/AVHRR satellite data during $1990\~1998$ were used in order to study the temporal and spatial variations of the upwelling cold water which occurred in the summer season. The cold water occurred frequently in the eastern coastal waters of Korea such as Soimal, Kijang, Ulgi, Kampo, Pohang, Youngduk, Chukbyun, Chumunjin and Sokcho, During the upwelling cold water phenomenon, SST came down more than $-5^{\circ}C$ in a day. The maximum of the averaged RMS amplitude of daily SST was $5.8^{\circ}C$ along the eastern coast of Korea on Julian day 212 from $1983\~1997$. The cross correlation coefficients were higher than 0.5 between Sokcho and Chumunjin in the northern part of the East Sea, and along Soimal, Kijang, Ulgi, Kampo and Pohang in the southern part of the East Sea. In late July, 1995 the cold water occurred at Ulgi coastal area and extended to Ullung island which is located 250 km off the Ulgi coast. Even though the distance between Soimal and the Ulgi coast area is more than 120 km, the cross correlation coefficient related to the anomalies of SST due to upwelling cold water was the highest (0.7) in the southeastern coastal area of the Korean peninsula. This connection may be due to the cyclonic circulation of the Tsushima Current in this area and the topography of the ocean rather than the local south wind which induced the coastal upwelling.

  • PDF

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature (Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가)

  • Jeon, Hoon-Ha;Verma, Ved Prakash;Noh, Kyoung-Seok;Kim, Do-Hyun;Choi, Won-Bong;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.359-365
    • /
    • 2007
  • In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.

Effects of 1 keV $Ar^+$ ion irradiation on Au films on glass (1 keV $Ar^+$ 이온의 조사가 유리기판위의 금 박막의 미치는 영향)

  • Jang, H. G.;Kim, H. S.;Han, S.;Choi, W. K.;Koh, S. K.;Jung, H. J.
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.371-376
    • /
    • 1996
  • Au films with a thickness around 1600 $\AA$ were deposited onto glass at room temperature by ion beam sputtering with a 5 cm cold-hollow ion gun at pressure $1\times 10^{-6}-1\times 10^{-5}$ Torr. Irradiation of the Au deposited samples was carried out at pressure of $7\times 10^{-6}$ Torr. For the sputter depositions, $Ar^+$ ion energy was 1 keV, and the current density at the substrate surface was 15 $\mu$A/$\textrm{cm}^2$. Effects of 1 keV $Ar^+$ ion dose($I_d$) between $1\times 10^{16}\; and\;2\times 10^{17}\;Ar^+\textrm{cm}^{-2}$on properties such as crystallinity, surface roughness and adhesion, etc. of the films have been investigated. The Au films sputtered by $Ar^+$ ion beam had only (111) plane and the X-ray intensity of the films decreased with increase of $I_d$. The thickness of Au films reduced with Id. $R_{ms}$ surface roughness of the films increased from 16 $\AA$ at as-deposited to 1118 $\AA$ at ion dose= $2\times 10^{17}\;Ar^+\textrm{cm}^{-2}$. Adhesion of Au film on sputtered at $I_d$= $2\times 10^{17}\;Ar^+\textrm{cm}^{-2}$ was 9 times greater than that of Au film with untreated, as determined by a scratch test.

  • PDF