• Title/Summary/Keyword: RGB-D cameras

Search Result 36, Processing Time 0.03 seconds

Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects (체적형 객체 촬영을 위한 RGB-D 카메라 기반의 포인트 클라우드 정합 알고리즘)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.765-774
    • /
    • 2019
  • In this paper, we propose a point cloud matching algorithm for multiple RGB-D cameras. In general, computer vision is concerned with the problem of precisely estimating camera position. Existing 3D model generation methods require a large number of cameras or expensive 3D cameras. In addition, the conventional method of obtaining the camera external parameters through the two-dimensional image has a large estimation error. In this paper, we propose a method to obtain coordinate transformation parameters with an error within a valid range by using depth image and function optimization method to generate omni-directional three-dimensional model using 8 low-cost RGB-D cameras.

Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera (다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Kwon, Soon-Chul;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.439-448
    • /
    • 2020
  • In this paper, we propose a modified optimization algorithm for point cloud matching of multi-view RGB-D cameras. In general, in the computer vision field, it is very important to accurately estimate the position of the camera. The 3D model generation methods proposed in the previous research require a large number of cameras or expensive 3D cameras. Also, the methods of obtaining the external parameters of the camera through the 2D image have a large error. In this paper, we propose a matching technique for generating a 3D point cloud and mesh model that can provide omnidirectional free viewpoint using 8 low-cost RGB-D cameras. We propose a method that uses a depth map-based function optimization method with RGB images and obtains coordinate transformation parameters that can generate a high-quality 3D model without obtaining initial parameters.

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.

Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

  • Yoon, Bumsik;Choi, Kunwoo;Ra, Moonsu;Kim, Whoi-Yul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.224-230
    • /
    • 2015
  • This manuscript presents a real-time solution for 3D human body reconstruction with multiple RGB-D cameras. The proposed system uses four consumer RGB/Depth (RGB-D) cameras, each located at approximately $90^{\circ}$ from the next camera around a freely moving human body. A single mesh is constructed from the captured point clouds by iteratively removing the estimated overlapping regions from the boundary. A cell-based mesh construction algorithm is developed, recovering the 3D shape from various conditions, considering the direction of the camera and the mesh boundary. The proposed algorithm also allows problematic holes and/or occluded regions to be recovered from another view. Finally, calibrated RGB data is merged with the constructed mesh so it can be viewed from an arbitrary direction. The proposed algorithm is implemented with general-purpose computation on graphics processing unit (GPGPU) for real-time processing owing to its suitability for parallel processing.

Confidence Measure of Depth Map for Outdoor RGB+D Database (야외 RGB+D 데이터베이스 구축을 위한 깊이 영상 신뢰도 측정 기법)

  • Park, Jaekwang;Kim, Sunok;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1647-1658
    • /
    • 2016
  • RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.

Object tracking algorithm through RGB-D sensor in indoor environment (실내 환경에서 RGB-D 센서를 통한 객체 추적 알고리즘 제안)

  • Park, Jung-Tak;Lee, Sol;Park, Byung-Seo;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.248-249
    • /
    • 2022
  • In this paper, we propose a method for classifying and tracking objects based on information of multiple users obtained using RGB-D cameras. The 3D information and color information acquired through the RGB-D camera are acquired and information about each user is stored. We propose a user classification and location tracking algorithm in the entire image by calculating the similarity between users in the current frame and the previous frame through the information on the location and appearance of each user obtained from the entire image.

  • PDF

Recent Trends of Real-time 3D Reconstruction Technology using RGB-D Cameras (RGB-D 카메라 기반 실시간 3차원 복원기술 동향)

  • Kim, Y.H.;Park, J.Y.;Lee, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.4
    • /
    • pp.36-43
    • /
    • 2016
  • 실 환경에 존재하는 모든 것을 3차원 모델로 쉽게 복원할 수 있을 것이라는 생각과 원격지에 있는 환경과 사람을 같은 공간에 있는 듯 상호작용할 수 있게 된 것은 그리 오래되지 않았다. 이는 일정 해상도를 보장해주는 RGB-D 센서의 개발과 이러한 센서들을 사용한 3차원 복원 관련 연구들이 활발히 수행되면서 가능하게 되었다. 본고에서는 널리 쓰이고 있는 RGB-D 카메라를 사용하여 실시간으로 때로는 온라인상에서 3차원으로 복원하고 가시화하는 기술에 대하여 살펴보고자 한다. 하나 또는 여러 개의 RGB_D 카메라를 사용하거나 모바일 장치에 장착된 RGB-D 센서를 사용하여 넓은 공간, 움직이는 사람, 온라인 상태의 환경 등을 실시간으로 복원하기 위한 기술들을 세부적으로 설명한다. 또한, 최근에 발표된 기술들이 다루고 있는 이슈들을 설명하고 향후 3차원 복원기술의 연구개발 방향에 대해서 논의한다.

  • PDF

Person Tracking by Detection of Mobile Robot using RGB-D Cameras

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • In this paper, we have implemented a low-cost mobile robot supporting the person tracking by detection using RGB-D cameras and ROS(Robot Operating System) framework. The mobile robot was developed based on the Kobuki mobile base equipped with 2's Kinect devices and a high performance controller. One kinect device was used to detect and track the single person among people in the constrained working area by combining point cloud data filtering & clustering, HOG classifier and Kalman Filter-based estimation successively, and the other to perform the SLAM-based navigation supported in ROS framework. In performance evaluation, the person tracking by detection was proved to be robustly executed in real-time, and the navigation function showed the accuracy with the mean distance error being lower than 50mm. The mobile robot implemented has a significance in using the open-source based, general-purpose and low-cost approach.

User classification and location tracking algorithm using deep learning (딥러닝을 이용한 사용자 구분 및 위치추적 알고리즘)

  • Park, Jung-tak;Lee, Sol;Park, Byung-Seo;Seo, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.78-79
    • /
    • 2022
  • In this paper, we propose a technique for tracking the classification and location of each user through body proportion analysis of the normalized skeletons of multiple users obtained using RGB-D cameras. To this end, each user's 3D skeleton is extracted from the 3D point cloud and body proportion information is stored. After that, the stored body proportion information is compared with the body proportion data output from the entire frame to propose a user classification and location tracking algorithm in the entire image.

  • PDF

Real-Time Motion Generation Method of Humanoid Robots based on RGB-D Camera for Interactive Performance and Exhibition (인터렉티브 공연·전시를 위한 RGB-D 카메라 기반 휴머노이드 로봇의 실시간 로봇 동작 생성 방법)

  • Seo, Bohyeong;Lee, Duk-Yeon;Choi, Dongwoon;Lee, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.528-536
    • /
    • 2020
  • As humanoid robot technology advances, the use of robots for performance is increasing. As a result, studies are being conducted to increase the scope of use of robots in performances by making them natural like humans. Among them, the use of motion capture technology is often used, and there are environmental inconveniences in preparing for motion capture, such as the need for IMU sensors or markers attached to each part of the body and precise high-performance cameras. In addition, for robots used in performance technology, there is a problem that they have to respond in real time depending on the unexpected situation or the audience's response. To make up for the above mentioned problems, in this paper, we proposed a real-time motion capture system by using a number of RGB-D cameras and creating natural robot motion similar to human motion by using motion-captured data.