• Title/Summary/Keyword: RGB color information

Search Result 499, Processing Time 0.024 seconds

Building Detection Using Edge and Color Information of Color Imagery (컬러영상의 경계정보와 색상정보를 활용한 동일건물인식)

  • Park, Choung Hwan;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.519-525
    • /
    • 2006
  • The traditional area-based matching or efficient matching methods using epipolar geometry and height restriction of stereo images, which have a confined search space for image matching, have still some disadvantages such as mismatching and timeconsuming, especially in the dense metropolitan city that very high and similar buildings exist. To solve these problems, a new image matching method through building recognition has been presented. This paper described building recognition in color stereo images using edge and color information as a elementary study of new matching scheme. We introduce the modified Hausdorff distance for using edge information, and the modified color indexing with 3-D RGB histogram for using color information. Color information or edge information alone is not enough to find conjugate building pairs. For edge information only, building recognition rate shows 46.5%, for color information only, 7.1%. However, building recognition rate distinctly increase 78.5% when both information are combined.

Color Characteristics of the Costumes of the Beijing Opera (중국 경극 의상의 색채특성)

  • Kim, Ji-Eon
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.2
    • /
    • pp.143-153
    • /
    • 2009
  • The purpose of this study is to provide color information in order to planning and merchandising in china fashion through the color of Beijing opera. In objective study, we collect total 302 Beijing opera images. The collecting method of source data is to extract digital color data by color picker. We transform RGB color data to H V/C, CIE L*a*b and analyze the attributes of color and tone, three-dimensional analysis. The results of this study are as follows : 1. The color distrbution of Beijing opera is R(26.9%)>YR(18.2%)>PB(11.6%)>Y(9.6%). Traditional preference color, red is most popular color as 26.7%:, the practice of vivid tone red is numerous. 2. The tone distribution of Beijing opera costume is P(16%)>It(13.9%)>d(11%)>5(9.6%)>4kg (8.2%)>b(7.1%:). The value o# Beijing opera costume distribute medium and medium-high and the chroma of those distributes low. 3. High chroma yellow is restrictive color as the symbol of emperor in china but medium-low chroma yellow is very frequently used. 4. Blue is often used in china costume. Especially in Beijing opera costume blue is symbol of bravery, dignity, cruel character 5. White in Beijing opera costume is much used for symbol of righteous loyalist. Black is less used than white in Beijing opera costume and black is authority color for symbol of the prime minister.

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

Development of RGBW Dimming Control Sensitivity Lighting System based on the Intelligence Algorithm (지능형 알고리즘 기반 RGBW Dimming control LED 감성조명 시스템 개발)

  • Oh, Sung-Kwun;Lim, Sung-Joon;Ma, Chang-Min;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.359-364
    • /
    • 2011
  • The study uses department of the sensitivity and fuzzy reasoning, one of artificial intelligence algorithms, so that develop LED lighting system based on fuzzy reasoning for systematical control of the LED color temperature. In the area of sensitivity engineering, by considering the relation between color and emotion expressed as an adjective word, the corresponding sensitivity word can be determined, By taking into consideration the relation between the brain wave measured from the human brain and the color temperature, the preferred lesson subject can be determined. From the decision of the sensitivity word and the lesson subject, we adjust the color temperature of RGB (Red, Green, Blue) LED. In addition, by using the information of the latitude and the longitude from GPS(Global Positioning System), we can calculate the on-line moving altitude of sun. By using the sensor information of both temperature and humidity, we can calculate the discomfort index. By considering the altitude of sun as well as the value of the discomfort index, the illumination of W(white) LED and the color temperature of RGB LED can be determined. The (LED) sensitivity lighting control system is bulit up by considering the sensitivity word, the lesson subject, the altitude of sun, and the discomfort index The developed sensitivity lighting control system leads to more suitable atmosphere and also the enhancement of the efficiency of lesson subjects as well as business affairs.

Car Plate Detection by HSI Color Information and Labelling (HSI 컬러 정보와 레이블링을 통한 차량 번호판 추출)

  • 이병모;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.442-444
    • /
    • 2001
  • 본 논문은 차량의 번호판 인식 시스템을 구축하는 첫 단계인 번호판 추출에 관한 것으로 차량과 번호판의 색상이 같은 경우에 대해서도 실험을 하였다. 본 논문에서는 RGB 컬러 정보 대신에 HSI 컬러 정보를 사용하여 특징점을 추출하였고, morphology를 이용하여 크기 보정을 반복 실행하며, 실패할 경우 merge 등을 통하여 최종적으로 크기를 보정한다. 그리고, 정확한 번호판 추출을 위해 한번 더 hue값을 이용한 보정을 함으로써 원하는 번호판 영역을 정확히 추출한다.

  • PDF

A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces (칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교)

  • Lee, Jeong Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

Livestock Theft Detection System Using Skeleton Feature and Color Similarity (골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information (컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적)

  • Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.

Moving object Tracking Algorithm Based on Specific Color Detection (특정컬러정보 검출기반의 이동객체 탐색 알고리듬 구현)

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.277-280
    • /
    • 2007
  • A moving object tracking algorithm for image searching based on specific color detection is proposed in this paper. That is preprocessed for a luminance variation and noise cancellation to be robust system. The motion tracking is used the difference between input image and reference image in R, G, B each channels for a moving image. The proposed method is enhanced to 15% fast in comparison with the contour tracking method and the matching method, and stable.

  • PDF

Day and night license plate detection using tail-light color and image features of license plate in driving road images

  • Kim, Lok-Young;Choi, Yeong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2015
  • In this paper, we propose a license plate detection method of running cars in various road images. The proposed method first classifies the road image into day and night images to improve detection accuracy, and then the tail-light regions are detected by finding red color areas in RGB color space. The candidate regions of the license plate areas are detected by using symmetrical property, size, width and variance of the tail-light regions, and to find the license plate areas of the various sizes the morphological operations with adaptive size structuring elements are applied. Finally, the plate area is verified and confirmed with the geometrical and image features of the license plate areas. The proposed method was tested with the various road images and the detection rates (precisions) of 84.2% of day images and 87.4% of night images were achieved.