• Title/Summary/Keyword: RGB Vector

Search Result 63, Processing Time 0.021 seconds

Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do - (무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 -)

  • Jeong, Chan-Hee;Go, Seung-Hwan;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.

Design of the 3D Object Recognition System with Hierarchical Feature Learning (계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계)

  • Kim, Joohee;Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this paper, we propose an object recognition system that can effectively find out its category, its instance name, and several attributes from the color and depth images of an object with hierarchical feature learning. In the preprocessing stage, our system transforms the depth images of the object into the surface normal vectors, which can represent the shape information of the object more precisely. In the feature learning stage, it extracts a set of patch features and image features from a pair of the color image and the surface normal vector through two-layered learning. And then the system trains a set of independent classification models with a set of labeled feature vectors and the SVM learning algorithm. Through experiments with UW RGB-D Object Dataset, we verify the performance of the proposed object recognition system.

A Study on Real-Time Vision-Based Detection of Skin Pigmentation

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.77-85
    • /
    • 2014
  • Usually, the skin pigmentation detection and diagnosis are made by clinicians. In this process it is subjective and non-quantitative. We develop an approach to detect and measure the different pigmentation lesions base on computer vision technology. In the paper we study several usually used skin-detecting color space like HSV, YCbCr and normalized RGB. We compare their performance with illumination influence for detecting the pigmentation lesions better. Base on a relatively stable color space, we propose an approach which is RGB channels vector difference characteristic for the detection. After the object region detection, we also use the difference to measure the difference between the lesion and the surrounding normal skin. From the experiment results, our approach can effectively detect the pigmentation lesion, and perform robustness with different illumination.

  • PDF

Color Edge Detection using Variable Template Operator

  • Baek Young-Hyun;Moon Sung-Ryong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.116-120
    • /
    • 2006
  • This paper discusses an approach for detecting a new edge in color images. The color image is to be represented by a vector field, and the color image edges are detected as differences in the local vector statistics. This method is based on the calculation for the vector angle between two adjacent pixels. Unlike Euclidean distance in RGB space, the vector angle distinguishes the differences in chromaticity, independent of luminance or intensity. The proposed approach can easily accommodate concepts, such as variable template edge detection, as well as the latest developments in vector order statistics for color image processing. In this paper, it is used not a conventional fixed template operator but a variable template operator The variable template is implemented and experimental results for digital color images are included.

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Unsharp masking based on the vector projection for removing color distortion (색차 왜곡 방지를 위한 벡터투사 기반 언샤프 마스킹 기법)

  • Lee, Kwang-Wook;Dan, Byung-Kyu;Kim, Seung-Kyun;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.224-231
    • /
    • 2009
  • Unsharp masking is a popular image enhancement technique used to sharpen an image appearance in gray images. However, the conventional unsharp making techniques amplify the noise and easily cause overshoot artifacts. Moreover, the unsharp masking tends to introduce color distortion when it is applied to the each color component independently. To solve these problems, we propose a novel unsharp masking technique based on human visual system and vector projection. The proposed algorithm consists of two steps. First, the proposed algorithm controls the level of sharpening by exploiting the characteristics of the human visual system and contrast region. Then the vector projection is applied to remove the color distortion. Experiment results show that our proposed algorithm successfully produces sharpened images that are free of noise and color distortion commonly found in the conventional unsharp masking algorithms.

  • PDF

Image retrieval algorithm based on feature vector using color of histogram refinement (칼라 히스토그램 정제를 이용한 특징벡터 기반 영상 검색 알고리즘)

  • Kang, Ji-Young;Park, Jong-An;Beak, Jung-Uk
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.376-379
    • /
    • 2008
  • This paper presents an image retrieval algorithm based on feature vector using color of histogram refinement for a faster and more efficient search in the process of content based image retrieval. First, we segment each of R, G, and B images from RGB color image and extract their respective histograms. Secondly, these histograms of individual R, G and B are divided into sixteen of bins each. Finally, we extract the maximum pixel values in each bins' histogram, which are calculated, compared and analyzed, Now, we can perform image retrieval technique using these maximum pixel value. Hence, the proposed algorithm of this paper effectively extracts features by comparing input and database images, making features from R, G and B into a feature vector table, and prove a batter searching performance than the current algorithm that uses histogram matching and ranks, only.

  • PDF

Region Merging Method Preserving Object Boundary for Color Image Segmentation (칼라 영상 분할을 위한 경계선 보존 영역 병합 방법)

  • 유창연;곽내정;김영길;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.319-326
    • /
    • 2004
  • In this paper, we propose color image segmentation by region merging method preserving the boundary of an object. The proposed method selects initial region by using quantized image's index map after vector quantizing an original image. After then, we merge regions by applying boundary restricted factor in order to consider the boundary of an object in HSI color space. Also we merge the regions in RGB color space for non-processed regions in HSI color space. And we reduce processing time by decreasing iterative process in region merging algorithm. Experimental results have demonstrated the superiority in region's segmentation results and processing time for various images.

  • PDF

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Developing Expert System for Recovering the Original Form of Ancient Relics Based on Computer Graphics and Image Processing (컴퓨터 그래픽스 및 영상처리를 이용한 문화 원형 복원 전문가시스템 개발)

  • Moon, Ho-Seok;Sohn, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.269-277
    • /
    • 2006
  • We propose a new expert system for recovering the broken fragments of relics into an original form using computer graphics and image processing. This paper presents a system with an application to tombstones objects of flat plane with letters carved in for assembling the fragments by placing their respective fragments in the right position. The matching process contains three sub-processes: aligning the front and letters of an object, identifying the matching directions, and determining the detailed matching positions. We apply least squares fitting, vector inner product, and geometric and RGB errors to the matching process. It turned out that 2-D translations via fragments-alignment enable us to save the computational load significantly. Based on experimental results from the damaged cultural fragments, the performance of the proposed method is illustrated.

  • PDF