• Title/Summary/Keyword: RG3

Search Result 827, Processing Time 0.034 seconds

Preventive effect of fermented red ginseng on cisplatin-induced nephrotoxicity mouse (Cisplatin으로 유도된 신손상 마우스 모델에 대한 발효홍삼의 예방효능)

  • Hyun, Ja-Kyoung;Kwon, O Jun;Lee, Joo Young;Roh, Seong-Soo;Seo, Young-Bae
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.113-124
    • /
    • 2016
  • Red ginseng is known to have many beneficial effects. Cisplatin, an effective antineoplastic drug, can cause many side effects like irreversible sensorineural hearing loss and serious tinnitus in humans. This study is aimed to reduce a cisplatin's side effect, nephrotoxicity by fermentated korean red ginseng. Korea ginseng was produced by steaming and dring and fermentation. And mice were divided into 4 groups- (A) normal mice, (B) Vehicle treated cisplatin mice, (C) RG0F0-treated cisplatin mice, (D) RG8F3-treated cisplatin mice. C and D groups were feed each material 200 mg/kg/day during 4 days. And cisplatin 20 mg/kg injected to B, C, and D groups as abdominal injection. After 24 h, blood sample was collected. The kidneys were harvested for histological, immuno histochemical and western blot analysis. 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was depended on steaming hours. RG0F0 and RG8F3 (ginseng-8 h steamed and fermented by Saccharomyces cerevisiae) were showed antioxidants effect in DPPH and ABTS radical scavenging activity. Component amounts according to steaming hours. 8 h steamed red ginseng had the most ingredients of ginsenoside. Treatments with RG8F3 reduced cisplatin-induced nephrotoxicity in the mice resulting in increase of GSH and decrease of ROS, BUN, creatinine, and inflammatory mediators. This result seems to be involved with the restriction of the inflammation in the kidney. Therefore, fermented red ginseng might have therapeutic efficacy in reduce kidney injury induced by cisplatin treatment.

Quality Stability of Products Containing Fermented Ginseng Berry Extracts (인삼열매 발효추출물을 함유한 제품의 품질안정성)

  • Kim, Seung Tae;Heo, Chang Hoe;Kim, Sung Hoon;Lee, Won Jong;Jang, Su Kil;Joo, Seong Soo
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.473-479
    • /
    • 2019
  • The purpose of this study was to investigate the storage stability of liquid stick packs containing concentrated and steam-dried ginseng berry. Storage stability of liquid stick packs was determined during storage at 10, 25 and $35^{\circ}C$ for 4 months. The pH was decreased from 4.81 to 3.81 after 4 months at $35^{\circ}C$ while the acidity and solubility were not changed during storage of 4 months. The DPPH radical scavenging activity was decreased during storage at $35^{\circ}C$ after 4 months. The Hunter L and yellowness (b) values decreased while the redness (a) was not changed during storage after 2 or 3 months. The total amount of six ginsenosides including Rg1, Rb1, F2, Rg3(S), Rg3(R), and Rg5 was not changed after storage of 4 months at 10 and $25^{\circ}C$. Neither bacteria nor coliforms were not detected during storage of 4 months. Considering quality parameters, significant changes were observed in color parameters L and b, while all others remained unchanged during 4 months stored at 10 and $25^{\circ}C$.

A Study on the Enhancement of Barrier Function and Improvement of Lipid Packing Structure in a 3D Skin Model by Ginsenoside Rg3 (Ginsenoside Rg3 에 의한 3D 피부 모델의 장벽 기능 강화 및 지질 패킹 구조 개선에 관한 연구)

  • Sunyoung Kim;Seol-Hoon Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2023
  • The skin's barrier structure is formed through the differentiation process of epidermal keratinocytes. It consists of corneocytes that are composed of keratin proteins and lipids that fill the spaces between them. During this process, the lipids such as phospholipid that made up the membrane of the basal layer cells of the epidermis are decomposed and replaced with newly synthesized components like ceramide. In this study, the effect of ginsenoside Rg3 components on the packing of the intercellular lipid structure of the skin barrier and the barrier function was confirmed. To confirm this, Rg3 components were treated during the differentiation process of 3D epidermal cells. The FT-IR and TEWL analysis on 3D epidermis showed an enhancement in the orthorhombic lipid packing and an improvement in barrier function. Additionally, in HaCaT cells, an increase in the expression of EVOL1 and EVOL4, which synthesize long-chain lipids, was detected, along with a decrease in CERS6, which synthesizes short-chain ceramide, and an increase in ACER6, which decomposes ceramide using phytosphingosine. This suggests the possibility that Rg3 affects lipid synthesis during the epidermal differentiation process, resulting in changes in barrier function.

Effect of Extrusion Process on the Change of Components in Ginseng (압출성형이 인삼의 성분변화에 미치는 영향)

  • Ryu, Byung-Hee;Choi, Mi-Jung;Chung, Koo-Chun;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.411-416
    • /
    • 2012
  • This study was carried out to investigate the effects of the extrusion process on the change of components in ginseng. The extraction yields from ginseng by distilled water extraction were highest in the extruded ginsengs, whereas it was lowest in the white ginseng. The contents of crude saponin were highest in the extruded ginseng, and they increased as the extrusion temperature was raised. The total contents of 11 kinds of ginsenosides increased in the order of red, white and extruded ginsengs. In particular, red ginseng showed higher contents of Rg1, Rg3 and Rb2, whereas Re was highest in white ginseng. In addition, the contents of Rg2, Rh1, Rh2 and Rg3 in the extruded white ginseng became higher. Free sugar contents were greatest in red ginseng. However, they were lowest in the extruded ginseng. White ginseng had a greater L value, whereas extruded ginseng demonstrated higher a and b values. In conclusion, the extraction yields, the contents of saponin, and ginsenoside-Rg2, Rh1, Rh2 and Rg3 were increased through the extrusion process.

Isolation of 20(S)-Ginsenoside Rg3 and Rg5 from the Puffed Red Ginseng (팽화 홍삼으로부터 20(S)-Ginsenoside Rg3와 Rg5의 분리 및 구조동정)

  • An, Young-Eun;Cho, Jin-Gyeong;Baik, Nam-In;Choi, Sung-Won;Hur, Nam-Yoon;Park, Seok-Jun;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Red ginseng tail roots (9.8 g water/100 g sample) were puffed at 7, 8, 9, and 10 $kg_{f}/cm^{2}$ using a rotational puffing gun. Puffed red ginseng was extracted with 70% ethanol, and the concentrated extract was successively partitioned with diethyl ether, n-butanol and $H_{2}O$. Two unknown ginsenosides from puffed red ginseng were found at 63 and 65 min of retention time in HPLC chromatogram suggesting that chemical structure of some ginsenosides might be altered during the puffing process. Identification of two unknown compounds was carried out using TLC, HPLC and NMR. Two major compounds were isolated from TLC. According to TLC result, compound I was expected to be the mixture of ginsenosides Rk1 and Rg5, and compound II was expected to be a 20(S)-ginsenoside $Rg_{3}$. Three compounds were isolated from n-butanol fraction through repeated silica gel and octadecyl silica gel column chromatographies. From the result of $^{1}H$- and $^{13}C$-NMR data, the chemical structures of unknown compounds were determined as ginsenoside $Rg_{5}$ and 20(S)-ginsenoside $Rg_{3}$. Unfortunately, ginsenoside $Rk_{1}$ could not be separated from ginsenoside-$Rg_{5}$ in the compound I. It was carefully reexamined using HPLC and confirmed that the last unknown compound was ginsenoside-$Rk_{1}$.

Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3 (Ginsenoside Rg3의 항암효능 연구의 진보)

  • Nam, Ki Yeul;Choi, Jae Eul;Hong, Se Chul;Pyo, Mi Kyung;Park, Jong Dae
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer) (초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향)

  • Choi, Woon-Yong;Lee, Choon-Geun;Seo, Yong-Chang;Song, Chi-Ho;Lim, Hye-Won;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

Ginsenoside Rg3 promotes inflammation resolution through M2 macrophage polarization

  • Kang, Saeromi;Park, Soo-Jin;Lee, Ae-Yeon;Huang, Jin;Chung, Hae-Young;Im, Dong-Soon
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Background: Ginsenosides have been reported to have many health benefits, including anti-inflammatory effects, and the resolution of inflammation is now considered to be an active process driven by M2-type macrophages. In order to determine whether ginsenosides modulate macrophage phenotypes to reduce inflammation, 11 ginsenosides were studied with respect to macrophage polarization and the resolution of inflammation. Methods: Mouse peritoneal macrophages were polarized into M1 or M2 phenotypes. Reverse transcription-polymerase chain reaction, Western blotting, and measurement of nitric oxide (NO) and prostaglandin $E_2$ levels were performed in vitro and in a zymosan-induced peritonitis C57BL/6 mouse model. Results: Ginsenoside $Rg_3$ was identified as a proresolving ginseng compound based on the induction of M2 macrophage polarization. Ginsenoside $Rg_3$ not only induced the expression of arginase-1 (a representative M2 marker gene), but also suppressed M1 marker genes, such as inducible NO synthase, and NO levels. The proresolving activity of ginsenoside $Rg_3$ was also observed in vivo in a zymosan-induced peritonitis model. Ginsenoside $Rg_3$ accelerated the resolution process when administered at peak inflammatory response into the peritoneal cavity. Conclusion: These results suggest that ginsenoside $Rg_3$ induces the M2 polarization of macrophages and accelerates the resolution of inflammation. This finding opens a new avenue in ginseng pharmacology.

Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression

  • Hong, Jihee;Gwon, Dasom;Jang, Chang-Young
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.481-488
    • /
    • 2022
  • Background: Although the tumor-suppressive effects of ginsenosides in cell cycle have been well established, their pharmacological properties in mitosis have not been clarified yet. The chromosomal instability resulting from dysregulated mitotic processes is usually increased in cancer. In this study, we aimed to investigate the anticancer effects of ginsenoside Rg1 on mitotic progression in cancer. Materials and methods: Cancer cells were treated with ginsenoside Rg1 and their morphology and intensity of different protein were analyzed using immunofluorescence microscopy. The level of proteins in chromosomes was compared through chromosomal fractionation and Western blot analyses. The location and intensity of proteins in the chromosome were confirmed through immunostaining of mitotic chromosome after spreading. The colony formation assays were conducted using various cancer cell lines. Results: Ginsenoside Rg1 reduced cancer cell proliferation in some cancers through inducing mitotic arrest. Mechanistically, it inhibits the phosphorylation of histone H3 Thr3 (H3T3ph) mediated by Haspin kinase and concomitant recruitment of chromosomal passenger complex (CPC) to the centromere. Depletion of Aurora B at the centromere led to abnormal centromere integrity and spindle dynamics, thereby causing mitotic defects, such as increase in the width of the metaphase plate and spindle instability, resulting in delayed mitotic progression and cancer cell proliferation. Conclusion: Ginsenoside Rg1 reduces the level of Aurora B at the centromere via perturbing Haspin kinase activity and concurrent H3T3ph. Therefore, ginsenoside Rg1 suppresses cancer cell proliferation through impeding mitotic processes, such as chromosome alignment and spindle dynamics, upon depletion of Aurora B from the centromere.

Enhancement of Ginsenoside Rg1 and Rg5 Contents in an Extract of Wood-cultivated Ginseng by Lactobacillus plantarum (Lactobacillus plantarum을 이용한 산양삼 추출물의 진세노사이드 Rg1 및 Rg5의 함량 증대)

  • Kwon, Hun-Joo;Cho, Yun-Ji;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.305-310
    • /
    • 2017
  • Twelve lactic acid bacteria harboring ${\alpha}$-rhamnosidase (EC 3.2.1.40) activity were isolated from traditional Korean foods. The 6 strains (Weissella confuse [n = 1], Lactobacillus pentosus [n = 1], and Lactobacillus plantarum [n = 4]) with the highest rhamnosidase activity were selected for bioconversion of an extract of wood-cultivated ginseng. The L. plantarum MBE/L2990 strain increased ginsenoside content (0.58 mg for Rg1 and 0.24 mg for Rg5) and showed higher bioconversion activity than the control strain L. plantarum KCTC21004 (56% and 42% increase for Rg1 and Rg5, respectively). L. plantarum MBE/L2990 was deposited at the Korean Collection for Type Cultures as Lactobacillus plantarum KCTC18529P.