Browse > Article
http://dx.doi.org/10.4014/mbl.1711.11001

Enhancement of Ginsenoside Rg1 and Rg5 Contents in an Extract of Wood-cultivated Ginseng by Lactobacillus plantarum  

Kwon, Hun-Joo (Department of Food Science and Biotechnology, Kangwon National University)
Cho, Yun-Ji (Department of Food Science and Biotechnology, Kangwon National University)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.4, 2017 , pp. 305-310 More about this Journal
Abstract
Twelve lactic acid bacteria harboring ${\alpha}$-rhamnosidase (EC 3.2.1.40) activity were isolated from traditional Korean foods. The 6 strains (Weissella confuse [n = 1], Lactobacillus pentosus [n = 1], and Lactobacillus plantarum [n = 4]) with the highest rhamnosidase activity were selected for bioconversion of an extract of wood-cultivated ginseng. The L. plantarum MBE/L2990 strain increased ginsenoside content (0.58 mg for Rg1 and 0.24 mg for Rg5) and showed higher bioconversion activity than the control strain L. plantarum KCTC21004 (56% and 42% increase for Rg1 and Rg5, respectively). L. plantarum MBE/L2990 was deposited at the Korean Collection for Type Cultures as Lactobacillus plantarum KCTC18529P.
Keywords
Lactic acid bacteria; rhamnosidase; ginsenoside; Lactobacillus plantarum; wood-cultivated ginseng;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Hong JT, Nam YM, Kim SJ, Ko SK. 2016. The change of ginsenoside composition in ginseng berry extract by the ultrasonication process. Yakhak Hoeji 60: 58-63.   DOI
2 Sim HS, Kim MD. 2015. Characteristics of lactic acid production by Lactobacillus buchneri isolated from Kimchi. Microbiol. Biotechnol. Lett. 43: 286-290.   DOI
3 Shin KC, Choi HY, Seo MJ, Oh DK. 2017. Improved conversion of ginsenoside Rb1 to compound K by semi-rational design of Sulfolobus solfataricus ${\beta}$-glycosidase. AMB Express 7: 186.   DOI
4 Upadhyaya J, Kim MJ, Kim YH, Ko SR, Park HW, Kim MK. 2016. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J. Ginseng Res. 40: 105-112.   DOI
5 Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, et al. 2015. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J. Ginseng Res. 39: 221-229.   DOI
6 Choi DH, Choi YH, Yeo SH, Kim MD. 2016. Isolation and characterization of Saccharomyces cerevisiae from nuruk for production of ethanol from maltose. Microbiol. Biotechnol. Lett. 44: 34-39.   DOI
7 Park EH, Kim MD. 2016. Antipathogenic activity of Lactobacillus plantarum isolated from pickled mulberry leaf. Microbiol. Biotechnol. Lett. 44: 163-170.   DOI
8 Wang Q, Hu C, Ke F, Huang S, Li Q. 2010. Characterization of a bacterial biocontrol strain 1404 and its efficacy in controlling postharvest citrus anthracnose. Wei. Sheng. Wu. Xue. Bao. 50: 1208-1217.
9 Bhasvar SK, Singh S, Giri S, Jain MR, Santani DD. 2009. Effect of saponins from Helicteres isora on lipid and glucose metabolism regulating genes expression. J. Ethnopharmacol. 124: 426-433.   DOI
10 Lui JHC, Staba EJ. 1980. The ginsenosides of various ginseng plants and selected products. J. Nat. Prod. 43: 340-346.   DOI
11 Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, et al. 2007. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 23: 262-266.
12 Park JD. 1996. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C. A. Meyer). Korea J. Ginseng Sci. 20: 389-415.
13 Huo YS. 1984. Anti-senility action of saponin in Panax ginseng fruit in 327 cases. Zhong Xi. Yi. Jie. He. Za. Zhi. 4: 593-596.
14 Liao B, Newmark H, Zhou R. 2002. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons In vitro. Exp. Neurol. 173: 224-234.   DOI
15 Zhang SC, Jiang XL. 1981. The anti-stress effect of saponins extracted from Panax ginseng fruit and the hypophyseal adrenal system. Yao. Xue. Xue. Bao. 16: 860-863.
16 Bae HM, Cho OS, Kim SJ, Im BO, Cho SH, Lee S, et al. 2012. Inhibitory effects of ginsenoside Re isolated from ginseng berry on histamine and cytokine release in human mast cells and human alveolar epithelial cells. J. Ginseng Res. 36: 369-374.   DOI
17 Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. 2007. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother. Pharmacol. 59: 589-601.   DOI
18 Park JH, Lee YH, Kang KS, Lee SK, Kim SZ, Park JY, et al. 2004. The effects of ginsenoside Rb1 on the apoptosis and the production of nitric oxide in rat C6 glioma cells. Korean J. Patho. 38: 1-7.
19 Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. 2006. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin- induced diabetic rats. Eur. J. Pharmacol. 550: 173-179.   DOI
20 Lee YY, Park JS, Jung JS, Kim DH, Kim HS. 2013. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int. J. Mol. Sci. 14: 9820-9833.   DOI
21 Van LTH, Dat NT, Khoi NN, Park JH, Duc NM. 2015. Ginsenoside Rk1 and ginsenoside Rg5 from processed vietnamese ginseng (Panax vietnamesis). J. Med. Mat. 20: 149-155.
22 Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, et al. 2010. Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J. Food Preserv. 17: 727-732.
23 Jang MH, Kim MD. 2010. ${\beta}$-glucosidase activity of lactic acid bacteria isolated from Kimchi. Food Eng. Prog. 14: 243-248.
24 Lim W, Mudge KW, Weston LA. 2007. Utilization of RAPD markers to assess genetic diversity of wild populations of north American ginseng (Panax quinquefolium). Planta Med. 73: 71-76.
25 Jin HS, Kim JB, Tun TJ, Lee KJ. 2008. Selection of Kimchi starters based on the microbial composition of Kimchi and their effects. J. Korean Soc. Food Sci. Nutr. 37: 671-675.   DOI
26 Ahn JE, Kim JK, Lee HR, Eom HJ, Han NS. 2012. Isolation and characterization of a bacteriocin-producing Lactobacillus sakei B16 from Kimchi. J. Korean Soc. Food Sci. Nutr. 41: 721-726.   DOI
27 Park CD, Jung HK, Park CH, Jung YS, Hong JH, Ko HS, et al. 2012. Isolation of citrus peel flavonoid bioconversion microorganism and inhibitory effect on oxidative damage in pancreatic beta cells. Korean Soc. Biotechnol. Bioeng. J. 27: 67-74.
28 Jang MH, Kim MD. 2011. ${\beta}$-1,4-xylosidase activity of Leuconostoc lactic acid bacteria isolated from Kimchi. Korean J. Food Sci. Technol. 44: 169-175.
29 Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, et al. 2009. Exploring the acidotolerance of ${\beta}$-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Res. Microbiol. 160: 775-784.   DOI
30 Kim CK. 2012. Ginseng sponins processing by using bio-conversion technology. J. Ginseng Res. 6: 3-13.
31 Yang MC, Kim DS, Jeong SW, Ma JY. 2011. Bioconversion constituents of galgeun-tang fermented by Lactobacillus plantarum. J. Korean J. Medicinal Crop. Sci. 19: 446-455.   DOI
32 Yadav V, Yadav PK, Yadav S, Yadav KDS. 2010. ${\alpha}$-l-Rhamnosidase: A review. Process Biochem. 45: 1226-1235.   DOI
33 Shim KS, Park GG, Park YS. 2014. Bioconversion of puffed red ginseng extract using ${\beta}$-glucosidase-producing lactic acid bacteria. Food Eng. Prog. 18: 332-340.   DOI
34 Jo MN, Jung EJ, Yoon HJ, Chang KH, Jee HS, Kim KT, et al. 2014. Bioconversion of ginsenoside Rb1 to the pharmaceutical ginsenoside Compound K using Aspergillus usamii KCTC6954. Korean J. Microbiol. Biotechnol. 42: 347-353.   DOI
35 Lee KJ, Gu MJ, Roh JH, Jung PM, Ma JY. 2013. Quantitative analysis of bioconversion constituents of Insampeadock-san using various fermented bacteria. Yakhak Hoeji 57: 167-172.