• Title/Summary/Keyword: RFM:Rational Function Model

Search Result 24, Processing Time 0.024 seconds

Rational function model-based image matching for digital elevation model

  • PARK CHOUNG-HWAN
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2005.11a
    • /
    • pp.59-80
    • /
    • 2005
  • This Paper Presents a Rational Function Model (RFM)-based image matching technique for IKONOS satellite imagery. This algorithm adopts the object-space approach and reduces the search space within the confined line-shaped area called the Piecewise Matching Line (PLM). Also, the detailed procedure of generating 3-D surface information using the Rational Function model Coefficients (RFCs) is introduced as an end-user point of view. As a result, the final generated Digital Elevation Model (DEM) using the proposed scheme shows a mean error of 2$\cdot$2 m and RMSE of 3$\cdot$8 m compared with that from 1:5000 digital map.

  • PDF

3-D Positioning and DEM Generation from the IKONOS Stereo Images (IKONOS 입체영상을 이용한 3차원 위치 결정과 DEM 생성)

  • 지학송;안기원;박병욱;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.423-431
    • /
    • 2003
  • This study presents on generation coefficients of the RFM using GEO-level stereo images of the IKONOS satellite. 3-D positioning and DEM generation of this model on the test field. In result, the maximum error of image coordinates acquired by the upward transform of the RFM did nat exceed 8 pixels. DEM was generated with kriging interpolation extracted three dimensional ground coordinate to rational quadratic function form, me compared it to reference digital elevation model made from 1:5,000 digital map and 1:1,000 digital map, and so, could generate digital elevation model in the accuracy as average RMSE of elevation was ${\pm}$ 3∼5 m in RFM.

  • PDF

RFM으로 생성된 레이더 정사영상 자료의 정확도 분석

  • 이선일;김윤형;이규성
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.121-128
    • /
    • 2003
  • 사면관측 원리에 의해 획득되는 레이더 영상은 레이더파의 입사각도와 지표면의 경사도 및 방위각에 따라 기하학적 왜곡이 발생하게 된다. 전 국토의 70% 이상이 산악지형인 국내 여건을 감안한다면 레이더 영상의 정량적 활용을 위해서는 정밀한 기하보정이 반드시 필요하다. 본 연구에서는 RADSARSAT-1 SAR 영상에 대하여 세 가지 기하보정 방법을 적용하였다. 먼저 GCP 만을 이용한 단순기하보정을 수행하였고, 두번째로 위성의 자세와 위치정보 등을 이용하여 센서모델을 통한 보정을 하였다. 마지막으로 다양한 영상자료에 적용할 수 있는 RFM(Rational Function Model)을 이용하여 기하보정을 하였다. 이 세 가지 방법으로 기하보정된 레이더 영상의 위치정확도를 모의 레이더 영상과 비교 분석하였다. 또한 RFM을 이용한 보정결과를 검증하기 위하여 SIR-C 영상을 추가로 분석하였다.

  • PDF

Development of Modeling Method for 3-D Positioning of IKONOS Satellite Imagery (IKONOS 위성영상의 3차원 위치 결정 모형화 기법 개발)

  • 진경혁;홍재민;유환희;유복모
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.269-274
    • /
    • 2004
  • Recent adoption of the generalized sensor model to IKONOS and Quickbird satellite imagery have promoted various research activities concerning alternative sensor models which can replace conventional physical sensor models. For example, there are the Rational Function Model(RFM), the Direct Linear Transform(DLT) and the polynomial transform. In this paper, the DLT model which uses just a few number of GCPs was suggested. To evaluate the accuracy of the proposed DLT model, the RFM using 35 GCPs and the bias compensation method(Fraser et al., 2003) were compared with it. Quantitative evaluation of 3B positioning results were performed with independent check points and the digital elevation models(DEMs). In result, a 1.9- to 2.2-m positioning accuracy was achieved for modeling and DEM accuracy is similar to the accuracy of the other model methods.

  • PDF

Positional Precision Improvement of RFM by the correlation analysis and Production of DEMs (상관도 분석을 통한 RFM의 위치 정확도 분석 및 수치표고모형의 제작)

  • Sohn, Hong-Gyoo;Sohn, Duk-Jae;Park, Choung-Hwan;You, Hyung-Uk;Pi, Mun-Hui
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.27-33
    • /
    • 2002
  • 최근 들어 다항식비례모형(RFM: Rational Function Model)은 비전문가에게 있어서 지형보정을 위한 정확도 문제를 해결함과 동시에 센서 종류에 상관없이 적용 가능한 범용적인 센서모델링 기법으로 각광을 받고 있다. 그러나 엄밀(physical) 모델이 없는 센서 혹은 위성의 궤도력 자료를 제공하지 않는 센서의 경우 다항식비례모형의 적용을 위해서는 다수의 매개변수 사용으로 인한 계수들 간의 상관성을 고려해야 한다. 이에 본 연구에서는 2차 다항식비례모형에 기초하여 전방 다항식비례모형(Forward RFM)과 상관도 분석을 통한 전방 다항식비례모형의 이른 및 위치정확도에 관한 연구를 수행하였다. 대상연구지역은 KOMPSAT(Korea Multi-Purpose Satellite)과 SPOT으로 촬영한 대전광역시와 그 주변지역으로 SPOT과 KOMPSAT 모두 상관성 분석 전에는 대략 50% 정도의 검사점에 대해 과대오차(>100m)가 얻어졌으며, 이 점들을 제외한 검사점에 대해서도 SPOT은 평균수평오차 20-24m, 평균표고오차 25m, KOMPSAT은 평균수평오차 15-24m, 평균표고오차 30m를 나타내었다. 전방 다항식비례모형에 대하여 상관성 분석을 수행한 후에는 검사점에 대한 모든 과대오차 조정결과가 소거되었고 검사점에 대해서 SPOT은 평균수평오차 8.8m, 평균표고오차 25.2m, KOMPSAT은 평균수평오차 8.4m, 평균표고오차 14.5m를 나타내었다. 최종적으로 연구지역에 대한 수치표고모형의 제작을 통해 상관도 분석을 통한 다항식비례모형의 실제 적용 가능성을 보여주었다.

  • PDF

Application of Satellite Image Using RFM (다항식비례모형을 이용한 위성영상의 활용에 관한 연구)

  • Sohn, Hong-Gyoo;Yoo, Hyung-Uk;Park, Choung-Hwan
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.73-80
    • /
    • 2002
  • RFM is believed to be universally applicable to any type of the sensor. Most of researches carried out lately are concentrated on terrain-independent method, but the researches about approvement of accuracy by way of terrain-dependent method are required to increase a practical use of satellite imagery in nonprofessional groups. This research focused on a means to improve RFM solution, a matching technique, and a generation of DEM through a correlation analysis, with terrain-dependent solution. The result shows that accuracy problem which is caused by over-parameterization on RFCs was removed through correlation analysis, and it was possible to generate a accurate DEM with terrain-dependent solution. And also, the application of RFM with different satellite images show sensor independent characteristics of RFM

  • PDF

Evaluating Modified IKONOS RPC Using Pseudo GCP Data Set and Sequential Solution

  • Bang, Ki-In;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.82-87
    • /
    • 2002
  • RFM is the sensor model of IKONOS imagery for end-users. IKONOS imagery vendors provide RPC (Rational Polynomial Coefficients), Ration Function Model coefficients for IKONOS, for end-users with imagery. So it is possible that end-users obtain geospatial information in their IKONOS imagery without additional any effort. But there are requirements still fur rigorous 3D positions on RPC user. Provided RPC can not satisfy user and company to generate precision 3D terrain model. In IKONOS imagery, physical sensor modeling is difficult because IKONOS vendors do not provide satellite ephemeris data and abstract sensor modeling requires many GCP well distributed in the whole image as well as other satellite imagery. Therefore RPC modification is better choice. If a few GCP are available, RPC can be modified by method which is introduced in this paper. Study on evaluation modified RPC in IKONOS reports reasonable result. Pseudo GCP generated with vendor's RPC and additional GCP make it possible through sequential solution.

  • PDF

KOMPSAT-2 Direct Sensor Modeling and Geometric Accuracy Analysis (다목적실용위성2호 센서모델링 및 기하정확도 분석)

  • Seo, Doo-Chun;Kim, Moon-Gyu;Lee, Dong-Han;Song, Jeong-Heon;Park, Su-Young;Lim, Hyo-Suk;An, Gi-Won;Lee, Hyo-Seong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The horizontal geo-location accuracy of KOMPSAT-2, without GCPs (Ground Control Points) is 80 meters CE90 for monoscopic image of up to 26 degrees off-nadir angle, after processing including POD (Precise Orbit Determination), PAD(Precise Attitude Determination) and AOCS (Attitude and Orbit Control Subsystem) sensor calibration. In case of multiple stereo images, without GCPs, the vertical geometric accuracy is less than 22.4 meters LE 90 and the horizontal geometric accuracy is less than 25.4 meters. There are two types of sensor model for KOMPSAT-2, direct sensor model and Rational Function Model (RFM). In general, a sensor model relates object coordinates to image coordinates The major objective of this investigation is to check and verify the geometrical performance when initial KOMPSAT-2 images are employed and briefly introduce the sensor model of KOMPSAT-2.

  • PDF

Accuracy Evaluation of DEM generated from Satellite Images Using Automated Geo-positioning Approach

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • S The need for an automated geo-positioning approach for near real-time results and to boost cost-effectiveness has become increasingly urgent. Following this trend, a new approach to automatically compensate for the bias of the rational function model (RFM) was proposed. The core idea of this approach is to remove the bias of RFM only using tie points, which are corrected by matching with the digital elevation model (DEM) without any additional ground control points (GCPs). However, there has to be a additional evaluation according to the quality of DEM because DEM is used as a core element in this approach. To address this issue, this paper compared the quality effects of DEM in the conduct of the this approach using the Shuttle Radar Topographic Mission (SRTM) DEM with the spatial resolution of 90m. and the National Geographic Information Institute (NGII) DEM with the spatial resolution of 5m. One KOMPSAT-2 stereo-pair image acquired at Busan, Korea was used as experimental data. The accuracy was compared to 29 check points acquired by GPS surveying. After bias-compensation using the two DEMs, the Root Mean Square (RMS) errors were less than 6 m in all coordinate components. When SRTM DEM was used, the RMSE vector was about 11.2m. On the other hand, when NGII DEM was used, the RMSE vector was about 7.8 m. The experimental results showed that automated geo-positioning approach can be accomplished more effectively by using NGII DEM with higher resolution than SRTM DEM.

Evaluation on extraction of pixel-based solar zenith and offnadir angle for high spatial resolution satellite imagery (고해상도 위성영상의 화소기반 태양 천정각 및 촬영각 추출 및 평가)

  • Seong, Seon Kyeong;Seo, Doo Chun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.563-569
    • /
    • 2021
  • With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.