DOI QR코드

DOI QR Code

Evaluation on extraction of pixel-based solar zenith and offnadir angle for high spatial resolution satellite imagery

고해상도 위성영상의 화소기반 태양 천정각 및 촬영각 추출 및 평가

  • Seong, Seon Kyeong (Dept. of Civil Engineering, Chungbuk National University) ;
  • Seo, Doo Chun (Image Data System Development Division, Satellite Information Center, Korea Aerospace Research Institute (KARI)) ;
  • Choi, Jae Wan (Dept. of Civil Engineering, Chungbuk National University)
  • Received : 2021.12.17
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

With the launch of Compact Advanced Satellite 500 series of various characteristics and the operation of KOMPSAT-3/3A, uses of high-resolution satellite images have been continuously increased. Especially, in order to provide satellite images in the form of ARD (Analysis Ready Data), various pre-processing such as geometric correction and radiometric correction have been developed. For pre-processing of high spatial satellite imagery, auxiliary information, such as solar zenith, solar azimuth and offnadir angle, should be required. However, most of the high-resolution satellite images provide the solar zenith and nadir angle for the entire image as a single variable. In this paper, the solar zenith and offnadir angle corresponding to each pixel of the image were calculated using RFM (Rational Function Model) and auxiliary information of the image, and the quality of extracted information were evaluated. In particular, for the utilization of pixel-based solar zenith and offnadir angle, pixel-based auxiliary data were applied in calculating the top of atmospheric reflectance, and comparative evaluation with a single constant-based top of atmospheric reflectance was performed. In the experiments using various satellite imagery, the pixel-based solar zenith and offnadir angle information showed a similar tendency to the auxiliary information of satellite sensor, and it was confirmed that the distortion was reduced in the calculated reflectance in the top of atmospheric reflectance.

KOMPSAT-3, 3A호의 운용 및 다양한 특성을 가지는 차세대중형위성의 발사에 따라서, 고해상도 위성영상의 활용이 지속적으로 증대되고 있다. 특히, ARD (Analysis Ready Data) 형태로의 위성영상 제공을 위하여 기하보정 및 방사보정 등의 다양한 전처리에 대한 연구가 이루어지고 있다. 위성영상의 전처리를 위해서는 촬영 영상에 관한 보조정보가 필요하며, 태양 천정각, 태양 방위각, 촬영각 등이 대표적인 자료이다. 그러나, 대부분의 고해상도 위성영상은 영상 전체에 대한 태양 천정각 및 촬영각을 단일 변수로 제공하고 있다. 본 연구에서는 RFM (Rational Function Model) 및 영상의 보조정보들을 이용하여 영상의 각 화소에 대응되는 태양 천정각 및 촬영각을 산출해보고, 이에 따른 품질을 평가해보고자 하였다. 특히, 화소 기반의 태양 천정각 및 촬영각의 활용을 위하여, 대기상부 반사율(top of atmospheric reflectance)을 산출함에 있어서, 화소 기반의 보조 자료를 적용하고, 단일 상수 기반의 대기상부 반사율과의 비교평가를 수행하였다. 실험 결과, 화소 기반의 태양 천정각 및 촬영각 정보는 보조정보와 유사한 경향을 보였으며, 이를 이용하여 계산된 대기상부 반사율은 왜곡이 감소되었음을 확인하였다.

Keywords

Acknowledgement

이 논문은 항공우주연구원의 "고해상도 다중분광 영상자료의 지형효과 보정 알고리즘개발" 과제로부터 지원받아 수행하였으며, 2020년도 정부(교육부)의 제원으로 한국연구재단의 지원을 받아 수행되었음(NRF-2020R1I1A3A04037483).

References

  1. Dial, G. and Grodecki, J. (2005), RPC replacement camera models, In Proceeding of ASPRS Annual Conference, Baltimore, Maryland, USA, pp. 7-11.
  2. Franch, B., Vermote, E., Skakun, S., Roger, J.C., Masek, J., Ju, J., Villaescusa-Nadal, J.L., and Santamaria-Artigas, A. (2019), A method for Landsat and SEntinel 2 (HLS) BRDF normalization. Remote Sensing, Vol. 11, No. 6, p.632. https://doi.org/10.3390/rs11060632
  3. Jung, D., Jin, D., Seong, N., Lee, K., Seo, M., Choi, S,. Sim, S., Han, K., and Kim, B. (2020), Sensitivity analysis of surface reflectance retrieved from 6SV LUT for each channel of KOMPSAT-3/3A. Korean Journal of Remote Sensing, Vol. 36, No. 5-1, pp.785-791. (in Korean with English abstract)
  4. Lee, K. and Kim, K. (2019), An Experiment for surface reflectance image generation of KOMPSAT 3A image Data by Open Source Implementation. Korean Journal of Remote Sensing, Vol. 35, No. 6-4, pp.1327-1339. (in Korean with English abstract)
  5. Park, S. and Jung, H. (2019), Band-based best model selection for topographic normalization of normalized difference vegetation index map. IEEE Access, Vol. 8, pp.4408-4417. https://doi.org/10.1109/access.2019.2963137
  6. Reda, I. and Andreas, A. (2004), Solar position algorithm for solar radiation applications, Solar Energy, Vol. 76, No. 5, pp.577-589. https://doi.org/10.1016/j.solener.2003.12.003
  7. USGS. (2021), Solar illumination and sensor viewing angle coefficient files, https://www.usgs.gov/core-sciencesystems/nli/landsat/solar-illumination-and-sensorviewing-angle-coefficient-files?qt-science_support_page_related_con=1#qt-science_support_page_related_con.
  8. Wu, J., Wang, D., and Bauer, M.E. (2005), Image-based atmospheric correction of QuickBird imageery of Minnesota cropland. Remote Sensing of Enviroment, Vol. 99, pp.315-325. https://doi.org/10.1016/j.rse.2005.09.006
  9. Xu, K., Zhang, G., Zhang, Q., and Li, D. (2018), Calculating viewing angles pixel by pixel in optical remote sensing satellite imagery using the Rational Function Model, Remote Sensing, Vol. 10, No. 3, p.478. https://doi.org/10.3390/rs10030478