• Title/Summary/Keyword: RF-CVD

Search Result 149, Processing Time 0.036 seconds

Characteristics Of TiO$_2$ Optical Thin Films With Ag Content by RF Magnetron Co-sputtering Method (RF magnetron co-sputtering으로 제작한 TiO$_2$ 광학 박막의 Ag 함량에 따른 특성)

  • 김상철;김의정;한성홍
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.282-283
    • /
    • 2003
  • TiO$_2$ 박막은 높은 굴절률과 유전 상수를 가지며, 가시광선과 근적외선 영역에서 우수한 투과성을 나타낸다. 따라서, 전기적, 광학적 특성이 우수한 광학코팅에 응용되고 있다. 또한 화학적으로 안정하고 비교적 큰 에너지 밴드 갭을 지닌 반도체 물질로서 유전체 다층 박막을 제작하는데 있어서 중요한 물질로 사용되고 있다. TiO$_2$ 박막을 제작하기 위한 물리적인 방법으로는 sputtering, anodic 또는 thermal, e-beam evaporation 등이 이용되고 있으며, sol-gel법, CVD 등과 같은 화학적인 방법도 이용되고 있다. (중략)

  • PDF

Characterization of Low-Temperature Graphene Growth with Plasma Enhanced Chemical Vapor Deposition

  • Ma, Yifei;Kim, Dae-Kyoung;Xin, Guoqing;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.421-421
    • /
    • 2012
  • Graphene has drawn enormous attention owing to its outstanding properties, such as high charge mobility, excellent transparence and mechanical property. Synthesis of Graphene by chemical vapor deposition (CVD) is an attractive way to produce large-scale Graphene on various substrates. However the fatal limitation of CVD process is high temperature requirement(around $1,000^{\circ}C$), at which many substrates such as Al substrate cannot endure. Therefore, we propose plasma enhanced CVD (PECVD) and decrease the temperature to $400^{\circ}C$. Fig. 1 shows the typical structure of RF-PECVD instrument. The quality of Graphene is affected by several variables. Such as plasma power, distance between substrate and electronic coil, flow rate of source gas and growth time. In this study, we investigate the influence of these factors on Graphene synthesis in vacuum condition. And the results were checked by Raman spectra and conductivity measurement.

  • PDF

Oxidation of BON and Si-DLC Thin Films deposited by Plasma Enhanced CVD method (Plasma Enhanced CVD 법으로 증착한 BON박막과 Si-DLC 박막의 산화)

  • Kim, Chan-U;Hong, Ri-Seok;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.73-73
    • /
    • 2007
  • Amorphous BON and Si-DLC thin films were synthesized by the RF plasma enhanced CVD method, and their oxidation behavior was studied up to $500^{\circ}C$ in air. The oxidation of both films was accompanied by evaporation of volatile species. The oxidation of BON film was preceded by nitrogen escape from the film, and oxygen penetration into the film. The oxidation of Si-DLC film was preceded by carbon escape probably as CO or $CO_2$from the film, and oxygen penetration into the film. The inwardly transported oxygen simply stayed in the oxidized BON and Si-DLC thin films.

  • PDF

Characterization and Construction of Chemical Vapor Deposition by using Plasma (rf 플라즈마 화학기상증착기의 제작 및 특성)

  • 김경례;김용진;현준원;이기호;노승정;최병구
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.69-76
    • /
    • 2000
  • The rf plasma chemical vapor deposition is a common method employed for diamond or amorphous carbon deposition. Diamond possesses the strongest bonding, as exemplified by a number of unique properties-extraordinary hardness, high thermal conductivity, and a high melting tempera tore. Therefore, it is very important to investigate the synthesis of semiconducting diamond and its use as semiconductor devices. An inductively coupled rf plasma CVD system for producing amorphous carbon films were developed. Uniform temperature and concentration profiles are requisites for the deposition of high quality large-area films. The system consists of rf matching network, deposition chamber, pumping lines for gas system. Gas mixtures with methane, and hydrogen have been used and Si (100) wafers used as a substrate. Amorphous carbon films were deposited with methane concentration of 1.5% at the process pressure of S torr~20 torr, and process temperature of about $750^{\circ}C$. The nucleation and growth of the amorphous carbon films have been characterized by several methods such as SEM and XRD.

  • PDF

APPLICATION OF RADIO-FREQUENCY (RF) THERMAL PLASMA TO FILM FORMATION

  • Terashima, Kazuo;Yoshida, Toyonobu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 1996
  • Several applications of radio-frequency (RF) thermal plasma to film formation are reviewed. Three types of injection plasma processing (IPP) technique are first introduced for the deposition of materials. Those are thermal plasma chemical vapor deposition (CVD), plasma flash evaporation, and plasma spraying. Radio-frequency (RF) plasma and hybrid (combination of RF and direct current(DC)) plasma are next introduced as promising thermal plasma sources in the IPP technique. Experimental data for three kinds of processing are demonstrated mainly based on our recent researches of depositions of functional materials, such as high temperature semiconductor SiC and diamond, ionic conductor $ZrO_2-Y_2O_3$ and high critical temperature superconductor $YBa_2Cu_3O_7-x$. Special emphasis is given to thermal plasma flash evaporation, in which nanometer-scaled clusters generated in plasma flame play important roles as nanometer-scaled clusters as deposition species. A novel epitaxial growth mechanism from the "hot" clusters namely "hot cluster epitaxy (HCE)" is proposed.)" is proposed.osed.

  • PDF

Characterization of structural properties of CNTs grown by ICP-CVD (ICP-CVD 방법을 이용한 탄소나노튜브의 제작 및 물성분석)

  • Chang, Seok-Mo;Kim, Young-Do;Park, Chang-Kyun;Uhm, Hyun-Seok;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1533-1535
    • /
    • 2002
  • Carbon nanotubes (CNTs) were grown with high density on a large area of Ni-coated silicon oxide substrates by using an inductively coupled plasma-chemical vapor deposition (ICP-CVD) of $C_2H_2$ at temperatures ranging from 600 to $700^{\circ}C$. The Ni catalyst was formed using an RF magnetron sputtering system with varying the operating pressure and exposure time of $NH_3$ plasma. The surface morphology of nickel catalyst films and CNTs was examined by SEM and AFM. The graphitized structure of CNTs was confirmed by Ramman spectra, SEM, and TEM. The growth of CNTs was observed to be strongly influenced by the surface morphology of Ni catalyst, which depended on the pre-treatment time and growth temperature. Dense CNTs with uniform-sized grains were successfully grown by ICP-CVD.

  • PDF

The Effects of Deposition Conditions on Deposition Rate and Crystallinity of ZnO Thin Films Deposited by PECVD (PECVD를 이용한 ZnO박막 증착시 증착 변수가 증착속도 및 결정 구조에 미치는 영향)

  • Kim, Yeong-Jin;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.90-96
    • /
    • 1994
  • ZnO thin films were deposited using Diethylzinc and $N_{2}O$ gas by plasma enhanced CVD (PECVD) at low substrate temperatures below $300^{\circ}C$. The effect of deposition parameters on the growth rate and the structural properties was determined at various deposition conditions. Crystallized ZnO thin films were successfully deposited even at $150^{\circ}C$ of substrate temperature. Above $200^{\circ}C$ c-axis oriented ZnO thin films, of which a standard deviation of X-ray rocking curve was less than $6^{\circ}$. were deposited on glass substrates. The variation of deposition rate showed different trends depending on substrate temperature and rf-input power. According to the deposition rate behavior as a function of substrate temperature, the transition points were observed resulting from crystallization of ZnO thin films. The activation energies for the deposition of ZnO thin films were 3.1KJ/mol and 1.9KJ/mol for the rf powers of 200W and 250W, respectively.

  • PDF

Optical Characteristics of Iron Silicide Films Prepared by Plasma CVD (Plasma CVD에 의해 제조된 Iron Silicide 박막의 광학적 특성)

  • Kim, Kyung-soo;Yoon, Yong-soo;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1999
  • The iron silicide films were prepared by chemical vapor deposition method using rf-plasma in variations of substrate temperature. rf-power, and ratio of $SiH_4$ and Fe-precursor. While iron silicide films are generally grown by ion beam synthesis (IBS) method of multi-step process, it is confirmed that iron silicide or $\beta$-phase consolidated $Fe_aSi_bC_cH_d$ was formed by one-step process in this study. The characteristics of films is variable because the different amounts of carbon and hydrogen was involved in the films as a function of dilute ratio of Fe-precursors and silane. It was shown that the different characteristics of films in carbon and hydrogen following the ratio of Fe-precursor and silane. The optical gap energy of films fabricated according to substrate temperature was invariant because active site brought in desorption of hydrogen was limiled. When rf-power was above 240 watt, the optical gap energy turned out to have high values because of dangling bonds increased by etching.

  • PDF

Investigations of DLC Films for Protection of Organic Photoconductors in Electrophotography

  • Ko, Myoung-Wan;Kim, Seong-Young;Shin, Seoung-Yong;Lee, Sang-Hyun;Akihiro Tanaka;Kazunori Umeda;Kazuyuki Mizuhara
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.88-91
    • /
    • 1997
  • The diamondlike (DLC) films were deposited by RF plasma CVD system which had cathode consisting of mesh sheet, for the purpose of a protection from wear of OPC surface of the electrophotographic photosensitive body. Material charateristics and tribological properties of the films were also investigated and finally copying performance was evaluated with DLC deposited OPC samples. The surface resistance of the DLC film unaffected by the surface potential of the OPC was about $10^{11}{\Omega}$ and its hardness was about 1200 kg/$\textrm{mm}^2$. In this case the film showed typical material strcture of dimondlike hydrocarbon. The friction coefficient of the film was lowered to 0.2~0.3 at the optimum condition in this investigation and their wear resistant was inproved by DLC-deposition on the OPC surface. DLC-deposited OPC samples with a good copying performance without image flow and draft could be obtained at some depositing conditions.

  • PDF

Synthesis of Diamond Thin Film by RF PACVD from $\textrm{H}_2$-$\textrm{CH}_4$ Mixed Gas (고주파 플라즈마 CVD에 의한 $\textrm{H}_2$-$\textrm{CH}_4$ 계로부터 다이아몬드 박막의 합성)

  • 임헌찬
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.13-18
    • /
    • 1999
  • Diamond film was deposited on Si wafer using $\textrm{H}_2$ and $\textrm{CH}_4$ mixed gas by RF PACVD. Prior to deposition, mechanical scratching was done to improve density of nucleation sites with diamond paste of $1\mu\textrm{m}$ The microstructure of deposited film was studied at various methane concentrations. The deposited film was characterized by XRD(X-tay diffraction), SEM(Scanning Electron Microscopy) and Raman Spectroscopy The deposited diamond film showed that the crystallite was increased at the lower methane concentration.

  • PDF