• Title/Summary/Keyword: RF-CVD

Search Result 149, Processing Time 0.042 seconds

A study on the formation and properties of TMDSO/$O_2$ thin film by the RF Plasma CVD (RF Plasma CVD에 의한 TMDSO/$O_2$의 합성과 박막의 특성에 관한 연구)

  • Kim, I.S.;Kim, G.Y.;Kang, D.P.;Yun, M.S.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.265-268
    • /
    • 1991
  • In the study, PPTMDSO(plasma-polymerized tetramethyldisiloxane) films were deposited on on glass substrate in a paralled plate reactor. As the function of RF power increased from 20 W to 110 W, and the substrate temperature increased from $25^{\circ}C$ to $100^{\circ}C$, the deposit ion rate, increased. When oxygen was intentionally added in monomer vapor, the concentration of Si-O-Si bonds increased while C-H, Si-H, -CH3, Si(CH3)x, -CH3, and Si-C bonds decreased in IR spectra. Thermal stability of PPTMSDO film were investigated and weight loss at $800^{\circ}C$ was 7.3 %.

  • PDF

A study on deposition of diamond thin films by RF plasma CVD (RF플라즈마CVD법에 의한 Diamond 박막의 성장에 관한 연구)

  • Jang, Jae-Deog;Koo, Hyo-Geun;Lee, Chwi-Cung;Park, Sang-Hyun;Kim, Jung-Dal
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.102-105
    • /
    • 1992
  • Using RF plasma CVD the diamond particles and films were deposited on Si and quartz substrate from $CH_4$-$H_2$ mixed gas. The temperature of substrate was uniformly maintained by inserting matal plate between substrate and substrate holder. As a result, the deposited diamond particles were mainly twins. The deposited diamond films were identified by SEM, XRD and Raman spectroscopy.

  • PDF

Synthesis of Diamond Thin Films by Rf Plasma Assisted Chemical Vapor Deposition (RF 플라즈마 CVD법에 의한 다이아몬드 박막의 합성)

  • 이상희;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.552-556
    • /
    • 1998
  • Diamond thin films were deposited on Si substrate using $CH_4 and H_2$mixed gas by RF plasma CVD. Prior to deposition, the substrate surface was mechanically scratched with the diamond paste of $3{\mu}m$ to improve the density of nucleation sites. The microstructure of diamond films deposited with methane(0.5%~2%) at the reaction pressure ranging from 20 torr to 50torrr were studied by a scanning electron microscope. It was observed in the deposited diamond films that the nucleation density decreased and crystallinity increased with decreasing the methane concentration. However, the nucleation density and crystallinity were decreased with decreasing the process pressure.

  • PDF

Crystallization of a-Si : H thin films deposited by RF plasma CVD method (플라즈마 화학기상증착법으로 성장시킨 수소화 비정질 규소박막의 결정화)

  • 김용탁;장건익;홍병유;서수정;윤대호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.56-59
    • /
    • 2001
  • Thin films of hydrogenated amorphous silicon (a-Si : H) of different compositions were deposited on Si(100) wafer and glass by RF plasma-enhanced chemical vapor deposition (PECVD). In the present work, we have investigated the effect of the If. power on the properties, such as optical band gap, transmittance and crystallinity, of crystalline silicon thin films. Raman data show that the material consists of an amorphous and crystalline phase for the co-presence of two peaks centered at 480 and 520cm$^{-1}$. X-ray spectra confirmed of crystallites with (111) orientation at 300w The transmittance of thin films was measured by UV-VIS spectrophotometer. In addition, Si-H chemical bondings were studied by Fourier Transform Infrared (FT-IR) spectroscopy.

  • PDF

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

Surface analysis of a-$Si_xC_{1x}:H$ deposited by RF plasma-enhanced CVD (RF plasma-enhancd CVD 법에 의해 증착된 a-$Si_xC_{1x}:H$ 의 표면분석)

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.285-303
    • /
    • 1999
  • Thin films of hydrogenated amorphous silicon carbide compounds (a-SixC1x:H) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane(SiH4) and methane(CH4) as the gas precursors at 1 Torr and at low substrate temperature (25$0^{\circ}C$). The gas flow rate was changed with every other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of a-SixC1x:H films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

Higly pure graphene flake fabrication method by using RF thermal plasma (RF thermal plasma system 을 이용한 초고순도 그래핀 플레이크 제조에 관한 연구)

  • O, Jong-Sik;O, Ji-Su;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.13-13
    • /
    • 2014
  • 그래핀은 높은 열전도도, 이동도, 물리적 강도, 화학적 안정성을 갖는 물질로써 가장 활발하게 연구가 진행되고 있는 소재이다. 하지만, 높은 품질의 그래핀을 생산하기 위한 Chemical Vapor Deposition(CVD) 그래핀 제조 방법은 높은 공정단가와 낮은 수율 문제로 적용에 어려움을 겪고 있다. 본 연구에서는 초고순도 그래핀 플레이크를 RF thermal plasma를 이용하여 제조함으로써 이러한 문제점을 해결하고자 한다.

  • PDF

A Study on the Growth and Characteristics of Diamond Thin Films by RF Plasma CVD (고주파플라즈마CVD법에 의한 Diamond 박막의 성장과 특성)

  • 박상현;장재덕;최종규;이취중
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.3
    • /
    • pp.346-354
    • /
    • 1993
  • The diamond particles and films were deposited on Si and qurtz substrate for $CH_4-H_2$ mixed gas by using RF plasma CVD. The temperature of substrate and the thinkness of films deposited on Si substrate were uniformly kept up by inserting metal plate between substrate and substrate holder. On increasing the reaction pressure in the same discharge power, the morphologies of films were changed from well-defind films to micro-crystal or ball-like. When diamond films were deposited on Si substrate from $CH_4-H_2$ mixed gas, we obtained well-defined diamond films at lower concentration than 0.5 vol% of $CH_4/H_2$. The deposited diamond films were indentified by SEM, XRD and Raman spectroscopy.

  • PDF

Reactive ion Etching Characterization of SiC Film Deposited by Thermal CVD Method for MEMS Application (MEMS 적용을 위한 Thermal CVD 방법에 의해 증착한 SiC막의 반응성 이온 Etching 특성 평가)

  • 최기용;최덕균;박지연;김태송
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2004
  • In recent years, silicon carbide has emerged as an important material for MEMS application. In order to fabricate an SiC film based MEMS structure by using chemical etching method, high operating temperature is required due to high chemical stability Therefore, dry etching using plasma is the best solution. SiC film was deposited by thermal CVD at the temperature of 100$0^{\circ}C$ and pressure of 10 torr. SiC was dry etched with a reactive ion etching (RIE) system, using SF$_{6}$/O$_2$ and CF$_4$/O$_2$ gas mixture. Etch rate has been investigated as a function of oxygen concentration in the gas mixture, rf power, working pressure and gas flow rate. Etch rate was measured by surface profiler and FE-SEM. SF$_{6}$/O$_2$ gas mixture showed higher etch rate than CF$_4$/O$_2$ gas mixture. Maximum etch rate appeared at RF Power of 450W. $O_2$ dilute mixtures resulted in an increasing of etch rate up to 40%, and the superior anisotropic cross section was observe