• Title/Summary/Keyword: RF-CVD

Search Result 149, Processing Time 0.053 seconds

The Effects of Reactive Gas Pressure and RF Power on the Synthesis of DLC Films by RF Planar Magnetron Plasma CVD (RF Planar Magnetron Plasma CVD에 의한 DLC박막합성에 미치는 RF Power와 반응가스 압력의 영향)

  • Kim, Seong-Yeong;Lee, Jae-Seong
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • 본 연구에서는 고밀도 플라즈마를 형성하는 planar magnetron RF 플라즈마 CVD를 이용하여 DLC(diamond-like carbon) 박막을 합성하였다. 이 방법을 이용하여 DLC 박막을 합성한다면 고밀도 플라즈마 때문에 종래의 플라즈마 CVD(RF-PECVD)법보다 증착속도가 더욱더 향상될 것이라는 것에 착안하였다. 이를 위해 magnetron에 의한 고밀도 플라즈마가 존재할 때도 역시 DLC박막형성에 미치는 RF 전력과 반응가스 압력이 중요한 반응변수인가에 대해 조사하였고, 일정한 자기장의 세기에서 RF전력과 DC self-bias 전압과의 관계를 조사하였다. 또한 RF전력변화에 따른 박막의 증착속도와 밀도를 측정하였다. 본 연구에 의해 얻어진 박막의 증착속도는 magnetron에 의한 이온화율이 매우 높아 기존의 RF-PECVD 법보다 매우 빠르며, DLC박막의 구조와 물질특성을 알아보기 위해 FTIR(fourier transform infrared)및 Raman 분광분석을 행한 결과 전형적인 양질의 고경질 다이아몬드상 탄소박막임을 알 수 있었다.

  • PDF

Development of 8kW Variable Frequency RF Generator for 450mm CVD & 300mm F-CVD process (450mm 반도체 CVD 장비 및 300mm F-CVD 공정용 8kW급 주파수 가변형 RF Generator 개발)

  • Kim, Dae-Wook;Yang, Dae-Ki;An, Young-Oh;Lim, Eun-Suk;Choi, Dae-Kyu;Choi, Sang-Don
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.95-96
    • /
    • 2014
  • 450mm 반도체 CVD 장비 개발 및 300mm F-CVD (Flowable CVD) 공정 개발에 있어서 공정 마진 확보 및 막질 품질 개선을 위해 주파수 가변형 RF Generator가 필수적으로 요구되고 있다. 20nm이하 STI (Shallow Trench Isolation), PMD (Pre-metal Dielectric) & IMD (Inter-Metal Dielectric) 미세공정 gap fill에 많은 문제점이 도출되고 있으며, 이유로는 Generator 고정 주파수에서 Matching Time delay 또는 Shooting에 의한 산포의 한계로 파악되었으며, 주파수 가변에 의한 고속 Tune 기능이 요구되어진다. 따라서 400kHz 주파수 가변형 RF-Generator 개발을 진행하였으며 본 논문을 통해 개발되어진 장비의 성능과 시험 평가한 결과를 소개하고자 한다.

  • PDF

Characteristic of Copper Films on PET Substrate Deposited by Cyclic Operation of RF-magnetron-sputtering Coupled with Continuous Operation of ECR-CVD (연속 ECR-CVD 조업하에 RF-magnetron-sputter의 싸이클조업을 통해 PET위에 올려진 구리박막의 특성)

  • Myung JongYun;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.465-472
    • /
    • 2005
  • Preparation of copper film on PET substrate was carried out by cyclic operation of RF-magnetron­sputtering under continuous operation of ECR-CVD. The purpose of this study is aimed to an increase in deposition rate with keeping excellent adhesion between copper film and PET. In order to optimize the sputtering time under continuous ECR-CVD, cyclic operation concept is employed. By changing parameters of cyclic operation such as split of e and cycle time of A, the characteristics and thickness of the deposited copper film are controlled. As $\theta$ value increase, film thickness could confirm to increase and its surface resistivity value decreases. The highest adhesive strength appears at $\theta=0.33$ and cycle time of 30 min. The uniformity of copper film shows $5\%$ in our experimental range.

NEW APPLICATIONS OF R.F. PLASMA TO MATERIALS PROCESSING

  • Akashi, Kazuo;Ito, Shigru
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.371-378
    • /
    • 1996
  • An RF inductively coupled plasma (ICP) torch has been developed as a typical thermal plasma generator and reactor. It has been applied to various materials processings such as plasma flash evaporation, thermal plasma CVD, plasma spraying, and plasma waste disposal. The RF ICP reactor has been generally operated under one atmospheric pressure. Lately the characteristics of low pressure RF ICP is attracting a great deal of attention in the field of plasma application. In our researches of RF plasma applications, low pressure RF ICP is mainly used. In many cases, the plasma generated by the ICP torch under low pressure seems to be rather capacitive, but high density ICP can be easily generated by our RF plasma torch with 3 turns coil and a suitable maching circuiit, using 13.56 MHz RF generator. Plasma surface modification (surface hardening by plasma nitriding and plasma carbo-nitriding), plasma synthesis of AIN, and plasma CVD of BN, B-C-N compound and diamond were practiced by using low pressure RF plasma, and the effects of negative and positive bias voltage impression to the substrate on surface modification and CVD were investigated in details. Only a part of the interesting results obtained is reported in this paper.

  • PDF

Growth of diamond films by RF-MW two step process (고주파-마이크로파 2단계 공정에 의한 다이아몬드 막의 성장)

  • Park, Sang-Hyun;Woo, Bog-Man;Park, Jae-Yoon;Lee, Sang-Hee;Lee, Duk-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1533-1536
    • /
    • 2001
  • To grow the diamond films by using RF-MW two step process, at first, diamond seeds were deposited on silicon substrate by RF plasma CVD, and then a diamond layer grown by MW plasma CVD on the seeds. The grain-size of diamond films deposited by using RF-MW two step process was smaller and denser and also, crystallity of diamond film was better than those of the MW plasma CVD process. The deposited diamond films were analyzed by SEM(scanning electron microscophy), XRD (x-ray diffraction), and Raman spectroscopy.

  • PDF

GROWTH OF AMORPHOUS CARBON THIN FILMS BY RF PLASMA CVD

  • Ryu, J.T.;Katayama, M.;Baek, Y.G.;Kim, Y.B.;Oura, K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.130-132
    • /
    • 2006
  • In this paper, the author describes a-C films grown in pure methane plasma without any diluent gas by using RF plasma-enhanced CVD, and the variations in their structural features and surface morphologies are examined as a function of substrate temperature. Raman spectroscopy and scanning electron microscopy were performed to characterize the properties of the film.

  • PDF

Formation of dense diamond films (조밀한 다이아몬드 막의 합성)

  • Park, Sang-Hyun;Park, Jae-Yoon;Koo, Hyo-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1503-1505
    • /
    • 2000
  • To grow the diamond films by using RF-MW mix-process, at first, diamond seeds were deposited on silicon substrate by RF plasma CVD, and then a diamond layer grown by MW plasma CVD on the seeds. The grain-size of diamond films deposited by using HF-MW mix-process was smaller and denser than those of the MW plasma CVD process. The deposited diamond films were analyzed by scanning electron microscophy, X-ray diffractometer and Raman spectroscopy.

  • PDF

RF Loss Minimization Method Using High Impedance Filter for Research (High Impedance Filter를 이용한 RF Loss 최소화 방법에 대한 연구)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • This study designed High impedance filter to reduce RF loss to heater heating wire and increase RF current flowing to heater ground wire. Effects such as D / R improvement and process reproducibility could be seen. In addition, RF parameter distribution optimization was possible by understanding the RF path of PE-CVD equipment using Plasma and designing filter.

The Effects of Substrate Temperature on Properties of Carbon Nanotube Films Deposited by RF Plasma CVD (RF Plasma CVD법에 의해 증착된 카본나노튜브(CNT)의 특성에 대한 기판 온도의 영향)

  • Kim, Dong-Sun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • Carbon Nanotube (CNT) films were deposited with varying deposition temperature by RF plasma CVD on Fe catalysts deposited onto $SiO_2$ films grown thermally on the silicon wafer using $C_2H_2$ and $H_2$ gases. The Fe catalysts on silicon oxide film were made by RF magnetron sputtering. The grounded grid mesh cover on the substrate holder was used for depositing CNT thin films with high purity. The surface morphologies and chemical structure of deposited CNT films were characterized using SEM, Raman, XPS and TEM. It was observed that deposited CNTs films were carbon fiber type having Bamboo-like multiwall structure and CNT film grown at $600^{\circ}C$ was more dense than that at $550^{\circ}C$, but become less dense at $650^{\circ}C$.