• Title/Summary/Keyword: RF passive device

Search Result 28, Processing Time 0.023 seconds

High-frequency characteristics of short-wavelength transmission line on polyether sulfone thin film for a realization of transparent flexible wireless communication device (투명 플렉시블 무선통신 소자구현을 위한 PES 박막상의 단파장 선로에 대한 고주파 특성연구)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.353-361
    • /
    • 2016
  • This work presents an investigation of the radio frequency characteristics of an FTLPGS (fishbone-type transmission line employing periodic ground structure) fabricated on PES (polyether sulfone) for the realization of a transparent flexible wireless communication device. According to the results, the FTLPGS on PES showed a shorter wavelength characteristic when compared with a conventional coplanar waveguide. Concretely, the wavelength of the FTLPGS was 1.91 mm at 50 GHz, which was 48.5% of the conventional coplanar waveguide. The bandwidth extraction result showed that the passband of the FTLPGS on PES was 250 GHz. Unlike conventional periodic structures, the characteristic impedance of the FTLPGS on PES also showed a very low frequency dependency. A miniaturization of the RF circuit on the PES substrate was made possible by the FTLPGS on PES having shown characteristic impedance lower than that of conventional transmission lines. These results mean that, with a broadband operation frequency, the FTLPGS on PES is a suitable construction application for the transmission line and distributed passive components.

A Design and Implementation of NFC Bridge Chip (NFC 브릿지 칩 설계 및 구현)

  • Lee, Pyeong-Han;Ryu, Chang-Ho;Chun, Sung-Hun;Kim, Sung-Wan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.96-101
    • /
    • 2015
  • This paper describes a design and implementation of the NFC bridge chip which performs interface between kinds of devices and mobile phones including NFC controller through NFC communication. The NFC bridge chip consists of the digital part and the analog part which are based on NFC Forum standard. Therefore the chip treats RF signals and then transforms the signal to digital data, so it can interface kinds of devices with the digital data. Especially the chip is able to detect RF signals and then wake up the host processor of a device. The wakeup function dramatically decreases the power consumption of the device. The carrier frequency is 13.56MHz, and the data rate is up to 424kbps. The chip has been fabricated with SMIC 180nm mixed-mode technology. Additionally an NFC bridge chip application to the blood glucose measurement system is described for an application example.

Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network (60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구)

  • 조창식;안단;이성대;백태종;진진만;최석규;김삼동;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, millimeter-wave monolithic integrated circuit(MIMIC) low noise amplifier(LNA) for V-band, which is applicable to 60 GHz wireless local area network(WLAN), was fabricated using the high performance 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate pseudomorphic high electron mobility transistor(PHEMT). The DC characteristics of PHEMT are drain saturation current density(Idss) of 450 mA/mm and maximum transconductance(gm, max) of 363.6 mS/mm. The RF characteristics were obtained the current gain cut-off frequency(fT) of 113 GHz and the maximum oscillation frequency(fmax) of 180 GHz. V-band MIMIC LNA was designed using active and passive device library, which is composed of 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT and coplanar waveguide(CPW) technology. The designed V-band MIMIC LNA was fabricated using integrated unit processes of active and passive device. The measured results of V-band MIMIC LNA are shown S21 gain of 21.3 dB, S11 of -10.6 dB at 60 GHz and S22 of -29.7 dB at 62.5 GHz. The measured result of V-band MIMIC LNA was shown noise figure (NF) of 4.23 dB at 60 GHz.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

An Analysis of Spoofing Effects on a GNSS Receiver Using Real-Time GNSS Spoofing Simulator (실시간 GNSS 기만 시뮬레이터를 이용한 위성항법수신기에서의 기만 영향 분석)

  • Im, Sung-Hyuck;Im, Jun-Hyuck;Jee, Gyu-In;Heo, Mun-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • In this paper, spoofing effects on a GNSS receiver were analyzed. The spoofer (spoofing device) was classified to two categories. One is an active spoofer and the other is a passive spoofer. The active spoofer was considered for analysis. For the analysis of spoofing effects on a GNSS receiver, a real-time GNSS spoofing simulator was developed. The simulator was consisted with two parts which are a baseband signal generation part and a RF up-conversion part. The first GNSS baseband signal was generated according to spoofing parameters such as range, range rate, GNSS navigation data, spoofing to GNSS signal ratio, and etc. The generated baseband signal was up-converted to GNSS L1 band. Then the signal transmitted to a GNSS signal. For a perfect spoofing, a spoofer knew an accurate position and velocity of a spoofing target. But, in real world, that is not nearly possible. Although uncertainty of position and velocity of the target was existed, the spoofer was operated as an efficient jammer.

Growth of high-$T_{c}$ Superconducting Multilayer thin films and Fabrication of Microwave Filter (고온초전도 다층박막의 성장과 마이크로파 필터의 개발)

  • 강광용;김철수;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.287-290
    • /
    • 2003
  • For microwave device applications, c-axis oriented high temperature superconducting YBa$_2$Cu$_3$O$_{7-{\delta}}$ (HTS-YBCO) epitaxial thin films on the r-cut sapphire substrate(Al$_2$O$_3$) were prepared. In order to reduce the lattice mismatch with a substrate and to enhance the crystallity of HTS thin films, CeO$_2$ buffer layer on the r-cut sapphire substrate was grown by the RF-magnetron sputtering. The YBCO films on the CeO$_2$ buffer layer were deposited using the pulsed-laser deposition (PLD) method. These HTS YBCO /CeO$_2$/Al$_2$O$_3$ multilayer thin films(30 $\times$ 30 mm$^2$) routinely exhibited a critical temperature(T$_{c}$) of 89 K from the R-T measurement. Using HTS YBCO/CeO$_2$ /Al$_2$O$_3$ multilayer thin film. We fabricated and characterized the microwave passive devices (planar type filters) with cryopack-age such as the coupled -line type low-pass filter (LPF) and the open-loop meander type bandpass filter (BPF).filter (BPF).).

  • PDF

The characteristics of bismuth magnesium niobate multi layers deposited by sputtering at room temperature for appling to embedded capacitor (임베디드 커패시터로의 응용을 위해 상온에서 RF 스퍼터링법에 의한 증착된 bismuth magnesium niobate 다층 박막의 특성평가)

  • Ahn, Jun-Ku;Cho, Hyun-Jin;Ryu, Taek-Hee;Park, Kyung-Woo;Cuong, Nguyen Duy;Hur, Sung-Gi;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.62-62
    • /
    • 2008
  • As micro-system move toward higher speed and miniaturization, requirements for embedding the passive components into printed circuit boards (PCBs) grow consistently. They should be fabricated in smaller size with maintaining and even improving the overall performance. Miniaturization potential steps from the replacement of surface-mount components and the subsequent reduction of the required wiring-board real estate. Among the embedded passive components, capacitors are most widely studied because they are the major components in terms of size and number. Embedding of passive components such as capacitors into polymer-based PCB is becoming an important strategy for electronics miniaturization, device reliability, and manufacturing cost reduction Now days, the dielectric films deposited directly on the polymer substrate are also studied widely. The processing temperature below $200^{\circ}C$ is required for polymer substrates. For a low temperature deposition, bismuth-based pyrochlore materials are known as promising candidate for capacitor $B_2Mg_{2/3}Nb_{4/3}O_7$ ($B_2MN$) multi layers were deposited on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system at room temperature. The physical and structural properties of them are investigated by SEM, AFM, TEM, XPS. The dielectric properties of MIM structured capacitors were evaluated by impedance analyzer (Agilent HP4194A). The leakage current characteristics of MIM structured capacitor were measured by semiconductor parameter analysis (Agilent HP4145B). 200 nm-thick $B_2MN$ muti layer were deposited at room temperature had capacitance density about $1{\mu}F/cm^2$ at 100kHz, dissipation factor of < 1% and dielectric constant of > 100 at 100kHz.

  • PDF

A RF MEMS Transmitter Based on Flexible Printed Circuit Boards (연성 인쇄 회로 기판을 이용한 초고주파 MEMS 송신기 연구)

  • Myoung, Seong-Sik;Kim, Seon-Il;Jung, Joo-Yong;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper presents the flexible MEMS transmitter based on flexible printed circuit board or FPCB, which can be transformed to arbitrary shape. The FPCB is suitable to fabricate light weight and small size modules with the help of its thin thickness. Moreover a module based on FPCB can be attached on the arbitrary curved surface due to its flexible enough to be lolled up like paper. In this paper, the flexible MEMS transmitter integrated on FPCB for a short-distance sensor network which is based on orthogonal frequency division multiplexing(OFDM) communication system is proposed. The active device of the proposed flexible MEMS transmitter is fabricated on InGaP/GaAs HBT process which has been used for power amplifier design to take advantages of high linear and high efficient characteristics. Moreover, the passive devices such as the filter and signal lines are integrated and fabricated on the FPCB board. The performance of the fabricated flexible MEMS transmitter is analyzed with EVM characteristics of the output signal.