• Title/Summary/Keyword: RF output power

Search Result 375, Processing Time 0.031 seconds

A Highly Efficient Dual-Mode 3G/4G Linear CMOS Stacked-FET Power Amplifier Using Active-Bypass

  • Kim, Unha;Kim, Yong-Gwan;Woo, Jung-Lin;Park, Sunghwan;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.393-398
    • /
    • 2014
  • A highly efficient dual-mode linear CMOS stacked-FET power amplifier (PA) is implemented for 3G UMTS and 4G LTE handset applications. High efficiency is achieved at a backed-off output power ($P_{out}$) below 12 dBm by employing an active-bypass amplifier, which consumes very low quiescent current and has high load-impedance. The output paths between high- and low-power modes of the PA are effectively isolated by using a bypass switch, thus no RF performance degradation occurs at high-power mode operation. The fabricated 900 MHz CMOS PA using a silicon-on-insulator (SOI) CMOS process operates with an idle current of 5.5 mA and shows power-added efficiency (PAE) of 20.5%/43.5% at $P_{out}$ = 12.4 / 28.2 dBm while maintaining an adjacent channel leakage ratio (ACLR) better than -39 dBc, using the 3GPP uplink W-CDMA signal. The PA also exhibits PAE of 35.1% and $ACLR_{E-UTRA}$ of -33 dBc at $P_{out}$ = 26.5 dBm, using the 20 MHz bandwidth 16-QAM LTE signal.

Dual-Band High-Efficiency Class-F Power Amplifier using Composite Right/Left-Handed Transmission Line (Composite Right/Left-Handed 전송 선로를 이용한 이중 대역 고효율 class-F 전력증폭기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.53-59
    • /
    • 2008
  • In this paper, a novel dual-band high-efficiency class-F power amplifier using the composite right/left-handed (CRLH) transmission lines (TLs) has been realized with one RF Si lateral diffusion metal-oxide-semiconductor field effect transistor (LDMOSFET). The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult in dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 880 MHz and 1920 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 880 MHz and 1920 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 79.536 % and 44.04 % at two operation frequencies, respectively.

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Design of Coupling and Rectifying Circuit for Monitoring of Transmitting Power of Maritime VHF Modem (해상 VHF 모뎀의 송신전력 모니터링을 위한 결합기 및 정류회로 설계)

  • Kim, Seung-Geun;Sung, So-Young;Lim, Young-Kon;Park, Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2642-2648
    • /
    • 2010
  • The design of coupling and rectifying circuits for the maritime VHF digital modem is investigated in this paper. To monitor the transmitting power of the modem, a directional coupler which is used to extract a small fraction of the transmitter signal power, and a rectifying circuit which make DC voltage proportional to the coupled rf power are designed and fabricated. The parallel-coupled line coupler with directivity of above 25 dB at 160 MHz bands is designed and it is shown that the output voltage of the rectifying circuit is linearly changing from 0.85 V to 1.6 V when the transmitting power of the modem is varying from 1 W to 25 W. The proposed coupler and rectifying circuits are expected to be suitable for maritime VHF digital modem.

A Compact Integrated RF Transceiver Module for 2.4 GHz Band Using LTCC Technology (LTCC 기술을 적용한 집적화된 2.4 GHz 대역 무선 송수신 모듈 구현)

  • Kim, Dong-Ho;Kim, Dong-Su;Ryu, Jong-In;Kim, Jun-Chul;Park, Chong-Dae;Park, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper presents a compact integrated transceiver module for 2.4 GHz band applications using Low Temperature Co-fired Ceramic(LTCC) technology. The implemented transceiver module is divided into an RF Front-End Module (FEM) part and a transceiver IC chip part. The RF FEM part except an SPDT switch and DC block capacitors is fully embedded in the LTCC substrate. The fabricated RF FEM has 8 pattern layers and it occupies less than $3.3\;mm{\times}5.2\;mm{\times}0.4\;mm$. The measured results of the implemented RF FEM are in good agreement with the simulated results. The transceiver IC chip part consists of signal line, power line and transceiver IC for 2.4 GHz band communication system. The fabricated transceiver module has 9 layers including three inner grounds and it occupies less than $12\;mm{\times}8.0\;mm{\times}1.1\;mm$. The implemented transceiver module provides an output power of 18.1 dBm and a sensitivity of -85 dBm.

Single Antenna Radar Sensor with FMCW Radar Transceiver IC (FMCW 송수신 칩을 이용한 단일 안테나 레이다 센서)

  • Yoo, Kyung Ha;Yoo, Jun Young;Park, Myung Chul;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.632-639
    • /
    • 2018
  • This paper presents a single antenna radar sensor with a Ku-band radar transceiver IC realized by 130 nm CMOS processes. In this radar receiver, sensitivity time control using a DC offset cancellation feedback loop is employed to achieve a constant SNR, irrespective of distance. In addition, the receiver RF block has gain control to adjust high dynamic range. The RF output power is 9 dBm and the full chain gain of the Rx is 82 dB. To reduce the direct-coupled Tx signal to the Rx in a single antenna radar, a stub-tuned hybrid coupler is adopted instead of a bulky circulator. The maximum measured distance between the horn antenna and a metal plate target is 6 m.

Analysis of Transistor's Circuit Coefficients on the Performance of Active Frequency Multipliers (전력증폭기 트랜지스터 파라미터의 능동 주파수 체배기 성능 영향에 대한 분석)

  • Park, Young-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1137-1140
    • /
    • 2011
  • In this paper, the optimal condition for efficient active frequency multipliers is analyzed. This analysis is based on the effects from transistor nonlinear coefficients, harmonic impedances, and output parasitic components. From the analysis, normalized harmonic power is estimated with the clipping condition of a commercial transistor, and the condition for high conversion efficiency is suggested. From the analysis, a class-F frequency tripler was implemented for the output at 2.475 GHz, showing the maximum efficiency of 22.9 % and the maximum conversion gain of 9.5 dB.

The RF Power Amplifier Using Active Biasing Circuit for Suppression Drain Current under Variation Temperature (RF전력 증폭기의 온도 변화에 따른 Drain 전류변동 억제를 위한 능동 바이어스 회로의 구현 및 특성 측정)

  • Cho, Hee-Jea;Jeon, Joong-Sung;Sim, Jun-Hwan;Kang, In-Ho;Ye, Byeong-Duck;Hong, Tchang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • In the paper, the power amplifier using active biasing for LDMOS MRF-21060 is designed and fabricated. Driving amplifier using AH1 and parallel power amplifier AH11 is made to drive the LDMOS MRF 21060 power amplifier. The variation of current consumption in the fabricated 5 Watt power amplifier has an excellent characteristics of less than 0.1A, whereas passive biasing circuit dissipate more than 0.5A. The implemented power amplifier has the gain over 12 dB, the gain flatness of less than $\pm$0.09dB and input and output return loss of less than -19dB over the frequency range 2.11~2.17GHz. The DC operation point of this power amplifier at temperature variation from $0^{\circ}C$ to $60^{\circ}C$ is fixed by active circuit.

Development of Power Supply for Ka-band Tracking Radars (Ka-대역 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.99-103
    • /
    • 2022
  • Millimeter-wave tracking radars operate in various environmental restrictions, thus they demand stable power sources with low noise level under high fluctuation of input voltage. This paper presents the design and implementation of the compact power supply with max power of 727 W for Ka-band tracking radar applications. To meet requirements of voltage accuracy and system efficiency for transceiver circuits, upper plates of buck converters are attached on the covers of power supply for efficient heat dissipation. The proposed power supply achieves system efficiency of 88.4 %, output voltage accuracy of ±2 % and noise level of <1% under full load conditions.

Design of X-Band High Efficiency 60 W SSPA Module with Pulse Width Variation (펄스 폭 가변을 이용한 X-대역 고효율 60 W 전력 증폭 모듈 설계)

  • Kim, Min-Soo;Koo, Ryung-Seo;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1079-1086
    • /
    • 2012
  • In this paper, X-band 60 W Solid-State Power Amplifier with sequential control circuit and pulse width variation circuit for improve bias of SSPA module was designed. The sequential control circuit operate in regular sequence drain bias switching of GaAs FET. The distortion and efficiency of output signals due to SSPA nonlinear degradation is increased by making operate in regular sequence the drain bias wider than that of RF input signals pulse width if only input signal using pulsed width variation. The GaAs FETs are used for the 60 W SSPA module which is consists of 3-stage modules, pre-amplifier stage, driver-amplifier stage and main-power amplifier stage. The main power amplifier stage is implemented with the power combiner, as a balanced amplifier structure, to obtain the power greater than 60 W. The designed SSPA modules has 50 dB gain, pulse period 1 msec, pulse width 100 us, 10 % duty cycle and 60 watts output power in the frequency range of 9.2~9.6 GHz and it can be applied to solid-state pulse compression radar using pulse SSPA.